CHEMISTRY A European Journal

Supporting Information

Total Synthesis, Stereochemical Revision, and Biological Reassessment of Mandelalide A: Chemical Mimicry of Intrafamily Relationships

Jens Willwacher, Berit Heggen, Conny Wirtz, Walter Thiel, and Alois Fürstner*[a]
chem_201501491_sm_miscellaneous_information.pdf

Table of Contents

Schematic Overview 3
Optimization of the MBH Reaction 12
Computational Section 13
Total Synthesis of Mandelalide A 19
1 Synthesis of the Acid Fragment. 19
2 Synthesis of the Alcohol Fragment 29
3 Synthesis of the Sugar Fragment 51
4 Fragment Assembly, Completion of the Synthesis and Structure Reassignment 56
Comparison of synthetic isomers and natural mandelalide A 78
Studies towards the Synthesis of Mandelalide C and D. 86
Comparison of synthetic 2,3-epi-mandelalide C (80) with the natural product. 109
References 116
Spectra 116

Scheme 1: Synthesis overview of the southern fragment 11 and rhamnosyl donor 40.
in red: yield for the enantiomer

23

94\%
$\mathrm{Co}_{2}(\mathrm{CO})_{8}(8 \mathrm{~mol} \%)$ TMS-morpholine (1.5 eq .)

$(R, R)-\mathbf{3 1}$ $\xrightarrow{\mathrm{Sc}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

82\%, 94\%ee, $98: 2$ d.r
80\%, 94.6\% ee

37 pour into aq. HC ,

TESCI,
$\stackrel{\text { TESCl, }}{\mathrm{NEt}_{3}, \text { DMAP }}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt
$90 \%, 91 \%$

25
40

Scheme 3: Alternative Route to Enone 41: Synthesis of the Meyer-Schuster Precursors.

\qquad

51

53

$$
\left.\begin{array}{c}
\mathrm{Ph} \\
\mathrm{Ph}-\mathrm{B}^{-}-\mathrm{O} \\
\vdots \\
\mathrm{H}_{2} \mathrm{~N}
\end{array}\right\rangle
$$

2,2-dimethoxypropan

DMF, rt

$97 \%, 10: 1$ regioisomers

51a

73% over 2 steps

54
TMSCHN_{2},

$$
\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2,} 0^{\circ} \mathrm{C}]{\text { aq. } \mathrm{HBF}_{4}}
$$

71%

52

55

Scheme 4: Alternative Route to Enone 41: Meyer-Schuster Rearrangement. Alternative Route to Rhamnosyl Compound X.

1) $D C C, D M A P$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt $64 \%, \alpha, \beta: \beta, \gamma=1.5: 1 ; 71 \%$ 2) DBU ($25 \mathrm{~mol} \%$), $\mathrm{MeCN}, 50^{\circ} \mathrm{C}$ 91\%, 92\%

1) $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$ 80\%; 88\%

2) HF-pyr, pyr THF, $0^{\circ} \mathrm{C}$ to rt 80\%; 85\%

3) $\mathrm{p}-\mathrm{TSOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 2: 1$, rt
$90 \% ; 89 \%$
4) 59 ,
TESOTf ($30 \mathrm{~mol} \%$)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} 4 \AA \mathrm{MS},-40^{\circ} \mathrm{C}$
89\%; 87\%

Scheme 5: Synthesis overview of the assembly stage and endgame for the proposed Structure
blue: yield for proposed structure
green: yield for 11-epi compound
blue: yield for proposed structure
green: yield for 11-epi compound

Scheme 6: Synthesis overview of the assembly stage and endgame for the reassigned structure.

Morita-Baylis-Hillman Model

98\%

(E)-crotonic acid DCC, DMAP $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt 81\%

S2

2) $\mathrm{DMP}, \mathrm{NaHCO}_{3}$ 55\%

MePPh_{2}, DMF,
$120^{\circ} \mathrm{C}$ sealed tube,
\downarrow for optimization see Table 1

Control Experiment for Regioselectivity of Dihydroxylation

i) LiHMDS, THF, $-78^{\circ} \mathrm{C}$

ii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, to rt
iii) $\mathrm{DBU}, 0^{\circ} \mathrm{C}$ to rt
58% E, 9% Z

83

$$
\xrightarrow[\text { ii) aq. } \mathrm{NaHSO}_{3} / \mathrm{THF}, \mathrm{rt}]{\substack{\text { OsO } \\ \mathrm{CH}_{4}, \mathrm{TMEDA} \\ \mathrm{CH}_{2},-78^{\circ} \mathrm{C}}}
$$

8:1 mono/bis-dihydroxylation

84: 72\%

Scheme 7: Model system for Morita-Baylis-Hilman reaction and Dihydroxylation Studies.

72

73

(24R)-74

$\mathrm{Me}_{2} \mathrm{PPh}, \mathrm{DMF}$
$90^{\circ} \mathrm{C}, 8 \mathrm{~h}$
sealed tube
38%

Scheme 8: Selective deprotection and Baylis-Hillman reactions.

Scheme 9: Completion of the synthesis of (2,3-epi)-deacylmandelalide D, (2,3,24-epi)-deacylmandelalide D and (2,3-epi)-mandelalide C.

Optimization of the MBH Reaction

Table 1: Selected attempts towards a MBH cyclization with model system S4.

entry	conditions ${ }^{1)}$	result ${ }^{2}$
1	DABCO (50 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt to $50{ }^{\circ} \mathrm{C}$	no reaction; then 95\% S14
2	Quinuclidine (1 eq.), $\mathrm{MeOH}(1.5 \mathrm{eq}$), rt	97\% S14
3	DBU ($50 \mathrm{~mol} \%$), MeCN, $0^{\circ} \mathrm{C}$ to rt	80\% S14
4	DMAP, DMAP. HCl, EtOH, reflux	complex mixture
5	NMI-oxide (5 eq.), neat, rt	s.m., trace S14
6	$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{S}, \mathrm{DMF}, 90^{\circ} \mathrm{C}$	s.m.
7	$\mathrm{Et}_{3} \mathrm{P}=\mathrm{O}, \mathrm{DMF}, 90^{\circ} \mathrm{C}$	s.m.
8	$\mathrm{Et}_{2} \mathrm{All}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene, -78 to $-20^{\circ} \mathrm{C}$	complex mixture
9	PhSCH ${ }_{2} \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$	complex mixture
10	$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}\right)_{3} \mathrm{P}=\mathrm{S}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$ to rt	s.m.; complex mixture
11	MgBr ${ }_{2}$, TMEDA, DMAP, MeOH	20\% S14, complex mixture
12	n-BuSeLi, THF, $-78{ }^{\circ} \mathrm{C} ; \mathrm{H}_{2} \mathrm{O}_{2}$ workup	trace S14, complex mixture
13	PhSeMgBr, THF, $-78{ }^{\circ} \mathrm{C}$ to rt	two unidentified products
14	n-BuTeLi, THF, $0^{\circ} \mathrm{C}$	complex mixture

1) Unless stated otherwise, 1 eq. of MBH mediator was employed. 2) determined by ${ }^{\mathrm{I}} \mathrm{H}$ NMR. s.m. = starting material

Table 2: Phosphine-catalyzed MBH reaction with model system S4.

entry	conditions ${ }^{1 /}$	$\begin{aligned} & \hline \text { result } \\ & \left(\mathbf{S 5 : S 1 4 : S 1 5) ^ { 2) }}\right. \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { yield of S5 } \\ (E / Z)^{3} \end{array} \\ \hline \end{array}$
1	PMe ${ }_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$	(0:11:78)	-
2	$\mathrm{Me}_{2} \mathrm{PPh}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt	mainly s.m.	-
3	Me ${ }_{2} \mathrm{PPh}, \mathrm{DMF}, 90^{\circ} \mathrm{C}$	(4:9:73)	-
4	MePPh ${ }^{\text {, DMF, }} 90{ }^{\circ} \mathrm{C}, 60 \mathrm{~h}$	(70:6:8)	65\% (7:1)
5	MePPh ${ }_{2}$, DMF, $120^{\circ} \mathrm{C}$, 24 h	(72:3:12)	67\% (5:1)
6	$\mathrm{PPh}_{3}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}$	no reaction	-
7	$\mathrm{P}\left(2\right.$-furyl) ${ }_{3}$, DMF, $90{ }^{\circ} \mathrm{C}$	no reaction	-
8	$\mathrm{P}(4-\mathrm{MeO}-\mathrm{Ph})_{3}, \mathrm{DMF}, 90^{\circ} \mathrm{C}$	no reaction	-

1) Unless stated otherwise, $30 \mathrm{~mol} \%$ of phosphine was employed. 2) determined by GC-MS analysis. Since several minor by-products were also formed, the products do not add up to 100.3) determined by ${ }^{1} \mathrm{H}$ NMR.

Although this screening revealed MePPh_{2} to be the ideal mediator of an intramolecular MBH reaction for β-substituted enoates, the application on substrates $\mathbf{7 3}$ and $\mathbf{S 1 0}$ failed. It was eventually found, that the slimmer $\mathrm{Me}_{2} \mathrm{PPh}$ furnished the products $\mathbf{7 4}$ with only trace amounts of elimination product $\mathbf{7 5}$ detectable.

Computational Section

Computational Methods

For conformer sampling, molecular dynamics (MD) simulations were performed employing the Nanoscale Molecular Dynamics (NAMD) code. ${ }^{1}$ Nonbonded interactions were truncated at a cutoff radius of $12 \AA$ and the CHARMM general force field was used. ${ }^{2}$ The applied setup procedure started with an energy minimization followed by heating up the system to 500 K with Langevin temperature control and equilibration for 25 ps . This was followed by an MD run for 2 ns with time steps of 1 fs , with snapshots being taken every 250 ps . For each diastereoisomer an individual MD run was carried out, from which the ten lowest-energy conformers were selected for further quantum-chemical study.

These conformers were subjected to single-point calculations in the gas phase applying Density Functional Theory (DFT) at the B3LYP ${ }^{3}$ level in combination with the $6-31 \mathrm{G}^{* *}$ basis set. ${ }^{4}$ The nuclear shielding constants of the hydrogen and carbon atoms were computed with the GIAO ansatz ${ }^{5}$ at the B3LYP/6-31G** level. All DFT calculations were performed using the Gaussian 09 package. ${ }^{6}$

Computational Results

DP4 probability

In total 20 diastereoisomers of Mandelalide A were studied as shown in Figure 1. Diastereoisomers A and C correspond to the originally suggested and the true structure of Mandelalide A, respectively. Experimental NMR data were available for the isolated natural product (iso) and for two synthetic compounds (syn-1 and syn-11-epi-1) that are known to have structures A and E, respectively. The notation for the synthetic compounds is adopted from the main paper.

Figure 1: Representation of all 20 diastereoisomers considered

The computed nuclear shielding constants σ were Boltzmann-averaged over all conformers of a given diastereoisomer (i.e., taking into account the thermal population of each conformer according to its Boltzmann weight derived from the B3LYP/6-31G** relative energies). Thereafter, the average chemical shifts δ of each diastereomer were computed by:

$$
\delta=\frac{\sigma-\sigma_{r e f}}{1-\sigma / 10^{6}}
$$

where $\sigma_{\text {ref }}$ is the computed shielding constant of the reference compound, in this case TMS.

Following the procedure described by Smith and Goodman, ${ }^{7}$ the computed average chemical shifts for all nuclei were scaled via linear regression with regard to the experimentally measured chemical shifts; this was done for each nucleus separately $\left({ }^{13} \mathrm{C}\right.$ and $\left.{ }^{1} \mathrm{H}\right)$. The difference of the scaled computed shift and the experimentally measured shift was taken as error. From these errors the DP4 probability was calculated by using Student's tistribution. The DP4 probability is a statistical measure of whether the computed and measured species (diastereomers) are the same despite the presence of errors, i.e. assuming that the errors are only due to inaccuracies of the NMR measurement and/or the computation but not due to considering different species (diastereomers). These probabilities were computed for each hydrogen and carbon atom independently. To obtain an overall probability for any given structure, the individual probabilities were multiplied either for all carbon atoms, all hydrogen atoms, or for both.

In Table 3, the calculated DP4 probabilities are listed for all 20 considered diastereomers with respect to the NMR data from the isolated Mandelalide A (iso, diastereomer C) and from two synthetic compounds (syn-1, diastereomer A; and syn-11-epi-1, diastereomer E). As shown in the main paper, isolated Mandelalide A corresponds to the synthetic compound syn-6 with structure C , while syn- $\mathbf{1}$ and syn-11-epi-1 have structures A and E, respectively.

Table 3: Computed DP4 probabilities.

iso				syn- $\mathbf{1}$		syn-11-epi-1		
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C	1.00	0.98	1.00	1.00	0.46	1.00	1.00	0.05
D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
R	0.00	0.02	0.00	0.00	0.54	0.00	0.00	0.95
S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

The DP4 results are inconsistent. On the basis of the ${ }^{13} \mathrm{C}$ shifts they always assign diastereomer C (correct for iso, false for syn- $\mathbf{1}$ and syn-11-epi-1). The DP4 analysis of the ${ }^{1} \mathrm{H}$ shifts favors diastereomer C for iso (correct), diastereomer R for syn-11-epi-1 (false), and almost equal probabilities for diastereomers C and R for syn- $\mathbf{1}$ (false). Considering both the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ shifts again yields diastereomer C for all three compounds which is only correct for iso. While the DP4 results for iso might be encouraging at first sight, the failures for syn-1 and syn-11-epi-1 show that the DP4 analysis is unreliable for the systems studied presently.

Conformational analysis

Structures (24R)-74 and (24S)-74 were optimized at the B3LYP/6-31G* level. All structures were confirmed to be minima by performing a frequency analysis. To obtain Gibbs free energies, thermal and entropic corrections were computed at 298 K . In both cases several conformers were considered to find an optimum match with the measured NOE contacts. In the optimized structures NOE contacts were assumed to be present when the relevant throughspace distances were less than $4 \AA$. To save CPU time the bulky TBS and TBDPS silyl groups were replaced by tert-butyl groups.

For (24S)-74 this procedure yielded one conformer that perfectly matched all NOESY data (see Figure 2 in the main paper). In the case of ($24 R$)-74, there are three low-lying conformers (within a range of $2 \mathrm{kcal} / \mathrm{mol}$) that fit the NOESY data. Their structures and relative free energies are presented in Figure 2 and Table 4, respectively. None of these three conformers provides a perfect match; however, being close in energy they will most likely co-exist in solution, and together they account for all observed NOESY signals.

a

b

c

Figure 2: Computed structures of the lowest-Lying conformers of (24R)-74.

conformer	relative free energy / $\mathbf{k c a l} / \mathbf{m o l}$
$(24 R)-74-\mathrm{a}$	0.0
$(24 R)-74-\mathrm{b}$	1.1
$(24 R)-74-\mathrm{c}$	2.0

References (Computational Section)

${ }^{1}$ J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781-1802.
${ }^{2}$ a) K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell Jr., J. Comput. Chem. 2010, 31, 671-690; b) W. Yu, X. He, K. Vanommeslaeghe, A. D. MacKerell Jr., J. Comput. Chem. 2012, 33, 2451-2468.
${ }^{3}$ A. D. J. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
${ }^{4}$ R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
${ }^{5}$ K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260.
${ }^{6}$ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmailov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
${ }^{7}$ G. Smith, J. M. Goodman, J. Am. Chem. Soc. 2010, 132, 12946-12959.

Total Synthesis of Mandelalide A

General. All reactions were carried out under Ar in flame-dried glassware unless $\mathrm{H}_{2} \mathrm{O}$ was used as a solvent. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{Mg} /$ anthracene), hexane, toluene $(\mathrm{Na} / \mathrm{K}), \mathrm{MeOH}(\mathrm{Mg}$, stored over MS $3 \AA$), $\mathrm{EtOH}(\mathrm{MS} 3 \AA), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right) \mathrm{EtOAc}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right.$, filter through dry $\mathrm{Al}_{2} \mathrm{O}_{3}$, store over $\left.4 \AA \mathrm{MS}\right)$; dioxane, $\mathrm{DMF}, \mathrm{MeCN}$, NEt_{3} and pyridine were dried by an adsorbtion solvent purification system based on molecular sieves. Huenig base, DBU, DABCO $\left(\mathrm{CaH}_{2}\right)$, allyl acetate, TMS-morpholine were distilled prior to use. $\mathrm{LiCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$ were dried at $120^{\circ} \mathrm{C}$ und high-vacuum overnight. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM® SIL/UV254); Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} \equiv 128.0 \mathrm{ppm}$; residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta_{\mathrm{H}} \equiv 7.16 \mathrm{ppm}$, pyr-d ${ }^{5}: \delta_{\mathrm{C}} \equiv 150.35 \mathrm{ppm}$; residual $\mathrm{C}_{5} \mathrm{HD}_{4} \mathrm{~N}$ in pyr-d ${ }^{5}: \delta_{\mathrm{H}} \equiv 8.74 \mathrm{ppm}, \mathrm{CD} 3 \mathrm{OD}$: $\delta_{\mathrm{C}} \equiv 49.15 \mathrm{ppm}$; residual residual $\mathrm{CD}_{2} \mathrm{HOD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}} \equiv 3.31$). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Optical rotations $\left([\propto]_{20}^{D}\right)$ were measured with a Perkin-Elmer Model 343 polarimeter. Unless stated otherwise, all commercially available compounds (Alfa Aesar, Aldrich, Fluka, Lancaster) were used as received.

The spectra of all compounds and intermediates leading to $\mathbf{1}$ and 11 -epi- $\mathbf{1}$ can be found in the Supporting Information of our original Communication. ${ }^{[2]}$

1 Synthesis of the Acid Fragment

(4S,6S)-Nona-1,8-diene-4,6-diol (10). According to the procedure from Krische et. al., ${ }^{[3]}$ a flameOH OH dried Young tube was charged with $[\mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ ($\left.974 \mathrm{mg}, 1.45 \mathrm{mmol}\right)$, ((S) Cl ,MeO-BIPHEP $(1.89 \mathrm{~g}, 2.90 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.78 \mathrm{~g}, 11.6 \mathrm{mmol})$ and 4-chloro-3-nitrobenzoic acid ($1.17 \mathrm{~g}, 5.80 \mathrm{mmol}$). 1,4-Dioxane (65 mL) and distilled allyl acetate (31.3 mL , 290 mmol) were added, the flask was sealed, and the suspension heated to $90^{\circ} \mathrm{C}$ for 30 min and cooled back to room temperature. A solution of 1,3-propanediol (9) ($2.10 \mathrm{~mL}, 29.0 \mathrm{mmol}$) in 1,4 dioxane (65 mL) was introduced, the flask sealed and stirring continued at $90^{\circ} \mathrm{C}$ for 72 h . After cooling to ambient temperature, the mixture was filtered through a pad of Celite ${ }^{\oplus}$ (eluent: EtOAc) and the filtrate was concentrated. The brown residue was purified by flash chromatography (hexanes/EtOAc 3:1) to give the desired diol as a pale yellow oil ($3.22 \mathrm{~g}, 71 \%$ yield, $>99 \%$ ee, $>29: 1$
d.r. $)$. $[\propto]_{D}^{20}=+24.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.85-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.13-$ $5.09(\mathrm{~m}, 2 \mathrm{H}), 5.09-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.72-2.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 4 \mathrm{H})$, $1.60(\operatorname{tr}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.6,118.0,68.1,42.0,41.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3340,3077,2979,2936,1723,1641,1434,1327,1232,1133,1047,994,912,871,830$ $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=115$ (10), 97 (74), 79 (38), 73 (19), 71 (89), 69 (52), 67 (49), 55 (19), 45 (39), 41 (100), 39 (29), 29 (13), 27 (28). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{H}$: 157.1228; found: 157.1229.

Bis-nitrobenzoate 10a. A Schlenck tube was charged with 4-nitrobenzoyl chloride (59 mg ,
 $0.32 \mathrm{mmol})$, DMAP ($1.6 \mathrm{mg}, 0.013 \mathrm{mmol}$) and pyridine ($52 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) before a solution of diol $10(10 . \mathrm{Mg}, 0.064 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.32 \mathrm{~mL})$ was added. The reaction mixture was stirred for 3 hours before the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. It was extracted with EtOAc (3 x 5 ml) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The yellow residue was purified by flash chromatography (hexanes/EtOAc 5:1) to give an off-white solid (27.3 mg, 94\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23-8.18(\mathrm{~m}, 4 \mathrm{H}), 8.11-8.05$ (m, 4H), $5.77(\mathrm{ddt}, J=17.2,10.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{dq}, J=7.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.17-5.05(\mathrm{~m}, 4 \mathrm{H})$, $2.49(\mathrm{ddt}, J=7.2,6.0,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.13(\mathrm{dd}, J=7.1,5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=164.1,150.3,135.6,132.4,130.6,123.5,118.9,71.1,39.0,37.4 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=1719,1607$, $1254,1410,1347,1319,1268,1117,1102,1014,993,922,872,836,783,718 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)$: 413 (13), 246 (5), 151 (8), 150 (100), 120 (9), 104 (14), 92 (4), 76 (5). HRMS (ESIpos): $m / z: ~ c a l c d ~ f o r ~$ $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}: 477.1268$, found 477.1266.
HPLC: 250 mm Chiralpak IB ($\emptyset 4.6 \mathrm{~mm}$), n-heptane/2-propanol 85:15, $1.0 \mathrm{~mL} / \mathrm{min}, 298 \mathrm{~K}, 4.4 \mathrm{MPa}$: $\mathrm{R}_{\mathrm{t}}=8.54 \mathrm{~min}$ (major), 10.64 min (meso), 15.44 min (minor).

(2S,4R,6S)-2-Allyl-6-(iodomethyl)tetrahydro-2H-pyran-4-ol (11). NaHCO_{3} (4.18 g, 49.8 mmol$)$
 was added at $-40^{\circ} \mathrm{C}$ to a solution of diol $10(3.11 \mathrm{~g}, 19.9 \mathrm{mmol})$ in MeCN $(360 \mathrm{~mL})$ and the resulting suspension was vigorously stirred for $10 \mathrm{~min} . \mathrm{I}_{2}(15.2 \mathrm{~g}$, 59.7 mmol) was carefully added in three portions and the resulting brown mixture stirred for 15 h at $-40^{\circ} \mathrm{C}$. The mixture was poured into sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution (200 mL) and the flask was rinsed with $\operatorname{EtOAc}(2 \times 50 \mathrm{~mL})$. After extraction of the aqueous phase with EtOAc ($2 \times 150 \mathrm{~mL}$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The brown residue was purified by flash chromatography (hexanes/EtOAc 3:1) to yield a $5: 1$ mixture of diastereoisomers (based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration, solvent: $\mathrm{C}_{6} \mathrm{D}_{6}$) as a colorless oil ($4.55 \mathrm{~g}, 81 \%$). This mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2} 60(15 \times 40 \mu \mathrm{~m}), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 5: 1\right)$ to give the desired all-cis diastereomer as a colorless oil $(3.54 \mathrm{~g}, 63 \%)$, which solidified upon prolonged storage at $-20^{\circ} \mathrm{C}$. $[\propto]_{D}^{20}=+25.7\left(\mathrm{c}=0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84(\mathrm{dddd}, J=16.8,10.2,7.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=5.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-$ $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{ddt}, J=12.5,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.3,117.1,75.4,75.0,67.8,40.7,40.2,40.1,8.7 \mathrm{ppm}$. IR (film): $\tilde{v}=3346,2942,2917,2850,1641,1446,1430,1414,1368,1325,1270,1185,1136,1080$, 1038, 998, 916, $854 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=282(0.3), 241$ (100), 223 (23), 197 (38), 73 (14), 67 (17), 45 (15), 43 (10). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$ INa: 305.0009; found: 305.0009.

(((2S,4R,6S)-2-Allyl-6-(iodomethyl)tetrahydro-2H-pyran-4-yl)oxy)(tert-butyl)-dimethylsilane

(12). A solution of alcohol $11(3.10 \mathrm{~g}, 11.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ before 2,6-

lutidine ($1.79 \mathrm{~mL}, 15.4 \mathrm{mmol}$) and TBSOTf ($3.03 \mathrm{~mL}, 13.2 \mathrm{mmol}$) were added dropwise via syringe. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. After phase separation, the aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 29:1) to yield the desired silyl ether as a colorless oil (4.18 g, 96\%). $[\propto]_{D}^{20}=+15.8\left(\mathrm{c}=1.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.97$ $(\mathrm{m}, 2 \mathrm{H}), 3.74$ (dddd, $J=10.8,10.7,4.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=5.9,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.33(\mathrm{dtt}, J=13.3,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dddd}, J=14.4,7.1,5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dddd}, J=$ $12.4,4.1,1.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.92$ (dddd, $\left.J=16.7,10.9,8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.54$ $(d d d d, J=10.8,10.7,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(d d d d, J=11.5,6.7,5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dddd, $J=$ $11.2,6.6,4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=10.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dtt}, J$ $=13.2,8.1,6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dddt}, J=14.0,7.5,5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{ddt}, J=12.3,47,2.0$, $1 \mathrm{H}), 1.63$ (dddd, $J=12.6,4.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{ddd}, J=12.6,11.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{ddd}, J=$ $12.2,11.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=134.5$,
$116.8,75.4,75.1,68.3,41.1,40.7,40.2,25.8,18.0,8.9,-4.6 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=2950,2928,2856$, $1642,1471,1462,1383,1251,1126,1087,1068,1005,916,833,773,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=$ 340 (14), 339 (81), 271 (27), 269 (10), 172 (14), 171 (100), 141 (14), 129 (42), 101 (38), 79 (21), 75 (37), 73 (23), 67 (11), 59 (14), 43 (25), 41 (18). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2}$ SiINa: 419.0872; found: 419.0874 .

(R)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)- N-((1S,2S)-

1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpropanamide (14). A flame-dried 3-necked round-
 bottom flask equipped with a stirbar, a reflux condenser and a dropping funnel was charged with dry $\mathrm{LiCl}(5.13 \mathrm{~g}, 121 \mathrm{mmol})$, diisopropylamine ($6.24 \mathrm{~mL}, 44.4 \mathrm{mmol}$) and THF (75 mL). After cooling to $-78^{\circ} \mathrm{C}$, a solution of n-BuLi (1.50 M in hexanes, $29.0 \mathrm{~mL}, 43.5 \mathrm{mmol}$) was added dropwise over 20 min and the mixture was stirred for 10 min before it was warmed to $0^{\circ} \mathrm{C}$. After 10 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $(1 S, 2 S)-N-(2-$ hydroxy-1-methyl-2-phenylethyl)- N-methylpropionic amide (13) (4.69 g, 21.2 mmol) in THF $(115 \mathrm{~mL})$ was added over 45 min via dropping funnel. The resulting yellow suspension was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$, for 30 min at $0^{\circ} \mathrm{C}$ and for 20 min at RT before it was re-cooled to $0{ }^{\circ} \mathrm{C}$. A solution of alkyl iodide $12(4.01 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF ($6 \mathrm{~mL}+2 \mathrm{x} 2 \mathrm{~mL}$ rinse) was then added dropwise over 5 min via syringe. The mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred at this temperature for 48 h . After cooling to RT , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL) and the aqueous layer was extracted with EtOAc (4 x 200 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $2: 1$) to give the alkylated compound as a white foam that collapsed to a colorless syrup upon storage ($3.83 \mathrm{~g}, 76 \%$). [\propto $]_{D}^{20}=+50.7\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were complex and broadened due to the presence of amide bond rotamers. IR (film): $\tilde{v}=3387,2933,2930,2856,1619,1462,1409,1374$, $1252,1115,1072,913,835,774,700,673 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=433$ (31), 432 (97), 383 (16), 382 (31), 325 (19), 258 (20), 257 (100), 216 (31), 193 (16), 171 (10), 148 (21), 129 (10), 119 (11), 101 (12), 99 (19), 79 (11), 75 (22), 73 (25), 58 (39). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{SiNa}$: 512.3167; found: 512.3166.

(S)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-N-((1R,2R)-

 1-hydroxy-1-phenylpropan-2-yl)- N,2-dimethylpropanamide (S14). Prepared analogously from
$(1 R, 2 R)-N$-(2-hydroxy-1-methyl-2-phenylethyl)- N-methylpropionic amide (ent-13) and alkyl iodide $12(3.08 \mathrm{~g}, 7.77 \mathrm{mmol})$ as a sticky syrup $(3.20 \mathrm{~g}, 84 \%) .[\propto]_{20}^{D}=-24.3\left(\mathrm{c}=0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were complex and partially broadened due to the presence of amide bond rotamers. IR (film): $\tilde{v}=3376,2934,2930,2856,1619,1472,1463,1374,1328,1306$,

1254, 1120, 1073, 1006, 915, 857, 836, 775, 702, $671 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=474(5), 433(28), 432$ (89), 383 (15), 382 (26), 325 (22), 258 (20), 257 (100), 222 (17), 193 (13), 148 (18), 119 (10), 99 (19), 75 (15), 73 (17), 58 (23). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{SiNa}$: 512.3167; found: 512.3169.

(R)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-2-methyl-

 propan-1-ol (14a). A solution of $n-\operatorname{BuLi}(1.60 \mathrm{M}$ in hexanes, $23.1 \mathrm{~mL}, 37.0 \mathrm{mmol})$ was added over 15 min at -7 $^{\circ} \mathrm{C}$ to a solution of diisopropylamine ($5.57 \mathrm{~mL}, 39.6 \mathrm{mmol}$) in THF $(34 \mathrm{~mL})$ and the resulting mixture was stirred at this temperature for 15 min and for 45 min at $0{ }^{\circ} \mathrm{C}$. Solid $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(90 \%, 1.31 \mathrm{~g}, 38.1 \mathrm{mmol})$ was then added in one portion and the resulting mixture stirred for 40 min at $0^{\circ} \mathrm{C}$ and for 45 min at ambient temperature. After cooling to $0^{\circ} \mathrm{C}$, a solution of amide $\mathbf{1 4}(3.80 \mathrm{~g}, 7.62 \mathrm{mmol})$ in THF $(34 \mathrm{~mL})$ was slowly added over 10 min . After stirring for 3 h at $0^{\circ} \mathrm{C}$, the mixture was warmed to ambient temperature and stirring continued for 1 h before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (200 mL). The mixture was vigorously stirred for 45 min before the phases were separated, the aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 120 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 5:1) to give the desired alcohol as a colorless oil ($2.42 \mathrm{~g}, 96 \%$). $[\alpha]_{D}^{20}=+17.8$ ($\mathrm{c}=$ $0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.85(\mathrm{dddd}, J=16.0,9.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.00$ (m, 2H), 3.63 (dddd, $J=10.7,10.4,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (ddd, $J=10.5,5.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=10.4,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{dddt}, \mathrm{J}=14.1,7.0,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15$ (br t, 1H), 2.12-2.04 (m, 1H), $1.78(\mathrm{dq}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{ddd}, J=$ $14.4,9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{ddd}, J=14.4,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=134.9,117.2,75.3$, $74.8,69.1,68.2,43.0,41.4,41.2,40.8,34.5,26.0,18.2,18.0,-4.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3395,2926$, $2929,2856,1643,1472,1462,1375,1253,1152,1123,1070,975,914,835,774,671 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=271(33), 201(20), 179(37) ; 171(47), 161(16), 159(47), 145(46), 131(12), 129(69), 127$ (12), 125 (15), 119 (15), 111 (12), 109 (65), 107 (12), 105 (22), 101 (44), 93 (18), 85 (93), 81 (28), 79 (26), 75 (100), 73 (49), 67 (43), 59 (22), 57 (14), 55 (24), 43 (17), 41 (32). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$: 351.2326; found: 351.2326 .

(S)-3-((2R,4R,6S)-6-Allyl-4-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-2-methyl-

 propan-1-ol (11-epi-14a). Prepared analogously from amide $\mathbf{S 1 4}(3.20 \mathrm{~g}, 6.53 \mathrm{mmol})$ as a colorless $\operatorname{oil}(1.86 \mathrm{~g}, 87 \%) .[\alpha]_{D}^{20}=+1.8\left(\mathrm{c}=1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ 5.85 (dddd, $J=17.7,9.6,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.65$ (dddd, $J=$ $10.7,10.7,5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.28 (dddd, $J=11.5,8.3,3.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dddd, $J=11.4,7.1,5.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{dtt}, J=14.0,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dddd}, J=14.1,8.6,4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
$1.86(\mathrm{qt}, J=6.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.9,8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.20$ $(\mathrm{m}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ $135.0,117.0,75.3,73.5,69.2,67.5,42.3,41.6,40.8,40.0,32.9,26.0,18.2,17.6,-4.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3394,2950,2929,2857,1375,1254,1151,1123,1072,1005,914,836,775,672 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI})$ $m / z(\%)=271(33), 201(20), 179(37) ; 171(47), 161(16), 159(47), 145(46), 131(12), 129(69), 127$ (12), 125 (15), 119 (15), 111 (12), 109 (65), 107 (12), 105 (22), 101 (44), 95 (41), 93 (18), 85 (93), 81 (28), 79 (26), 75 (100), 73 (49), 67 (43), 59 (22), 57 (14), 55 (24), 43 (17), 41 (32). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}$: 351.2326; found: 351.2327.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R)-3-hydroxy-2-methylpropyl)-

 tetrahydro-2H-pyran-2-yl)but-2-enoate (14b). Hoveyda-Grubbs $2^{\text {nd }}$ gen. catalyst 20 (137 mg, OH $\quad \mathrm{OO}_{2} \mathrm{Me} 0.219 \mathrm{mmol}$) was added to a solution of the terminal alkene $\mathbf{1 4 a}(2.40 \mathrm{~g}$, 7.30 mmol) and methylacrylate ($3.27 \mathrm{mmol}, 36.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. The mixture was stirred for 7.5 h at ambient temperature allowing the generated ethene to evaporate. After concentration, the residue ($E / Z=12$: 1 based on ${ }^{1} \mathrm{H}$ NMR integration of a crude sample) was purified by flash chromatography (hexanes/EtOAc 5:1 to $4: 1)$ to give the title compound as a pale brown oil $(2.33 \mathrm{~g}$, single isomer, $83 \%)$. $[\alpha]_{D}^{20}=+9.0(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.09(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57$ (dddd, $J=10.8,10.6,4.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) 3.39-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.09$ (dddd, $J=$ $11.7,9.7,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dddd, $J=11.7,7.0,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dddd, $J=14.8,7.4,7.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dddd}, J=8.6,8.6,5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $(\mathrm{ddd}, J=14.4,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=166.4,145.1,123.5,74.6$, $74.2,68.9,68.1,51.0,42.7,41.5,40.7,38.7,34.0,26.0,18.2,17.7,-4.3,-4.3 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 3436, 2933, 2929, 2856, 1725, 1659, 1462, 1436, 1376, 1324, 1255, 1175, 1122, 1069, 985, 855, 836, $775,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=329(14), 237(54), 229(17), 203(11), 159(26), 137(11), 131$ (12), 129 (20), 109 (30), 101 (23), 97 (20), 93 (21), 89 (11), 85 (100), 81 (15), 75 (46), 73 (32), 67 (18), 59 (13), 55 (12), 41 (15). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}$: 409.2381; found: 409.2381.Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S)-3-hydroxy-2-methylpropyl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-14b). Prepared analogously from terminal alkene 11 -epi-14a $(1.82 \mathrm{~g}, 5.63 \mathrm{mmol})$ as a colorless oil $(1.99 \mathrm{~g}, 91 \%) .[\propto]_{D}^{20}=-0.4(\mathrm{c}$
$\left.=1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=7.09(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.90(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{tt}, J=10.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 5 \mathrm{H})$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93(\mathrm{dddd}, J=14.9,7.1,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{tdd}, J=12.8,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddt}, J=12.6,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddt}, J=12.4,4.8$,
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{ddd}, J=14.1,8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=14.2,7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{ddd}, J=$ $11.8,11.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{ddd}, J=11.7,11.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=166.6,145.5,123.3,74.2,73.8,69.0,67.5$, $51.0,42.2,41.7,40.0,38.7,32.9,26.0,18.2,17.7,-4.3,-4.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3436,2951,2930$, $2857,1726,1660,1463,1436,1376,1330,1256,1175,1154,1122,1072,987,854,837,776 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=329(14), 237(54), 229(17), 203(11), 159(26), 137(11), 131$ (12), 129 (20), 109 (30), 101 (23), 97 (20), 93 (21), 89 (11), 85 (100), 81 (15), 75 (46), 73 (32), 67 (18), 59 (13), 55 (12), 41 (15). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}$: 409.2381; found: 409.2382.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R)-2-methyl-3-oxopropyl)tetra-hydro-2H-pyran-2-yl)but-2-enoate (15). A solution of Dess-Martin periodinane (524 mg ,
 $1.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ before a solution of alcohol $\mathbf{1 4 b}(398 \mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}+1 \mathrm{~mL}$ rinse) was added dropwise via syringe. After 5 min , the mixture was allowed to warm to ambient temperature and stirring was continued for 3 h . The reaction was quenched by addition of aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solution $(1: 1,15 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc $12: 1$ to $9: 1$) to yield the desired aldehyde as a colorless oil ($305 \mathrm{mg}, 77 \%$) . $[\alpha]_{D}^{20}=+3.4$ (c $=0.81$, hexanes). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=15.7,7.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddd}, J=15.7,1.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dqd}, J=7.1,7.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.3,9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{ddd}, J=$ $14.3,7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.8,166.8,145.2,123.0,74.2,73.4,68.4,51.5,43.8,41.8,41.1$, $38.6,37.3,25.8,18.1,13.8,-4.5 \mathrm{ppm}$. MS (EI) $m / z(\%)=328$ (15), 327 (60), 309 (27), 235 (20), 229 (49), 227 (16), 203 (51), 201 (22), 199 (22), 185 (15), 183 (36), 175 (16), 157 (33), 145 (30), 129 (33), 109 (15), 107 (23), 101 (48), 97 (29), 93 (29), 89 (22), 85 (31), 83 (25), 81 (36), 79 (15), 75 (100), 73 (54), 59 (27), 41 (25). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$: 407.2228; found: 407.2224 .

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S)-2-methyl-3-oxopropyl)tetra-

 hydro-2H-pyran-2-yl)but-2-enoate (11-epi-15). A slightly modified procedure had to be used: A solution of Dess-Martin periodinane ($783 \mathrm{mg}, 1.85 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaHCO}_{3}(358 \mathrm{mg}, 4.27 \mathrm{mmol})$ was added as a solid, followed by addition of a solution of alcohol 11 -epi-14b ($550 \mathrm{mg}, 1.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}+1 \mathrm{~mL}$ rinse). After 5 min , the mixture was allowed to reach ambient temperature and stirring was continued for 3 h . The mixture was filtered and the filtrate loaded onto SiO_{2}. Purification by flash chromatography (hexanes/EtOAc 12:1 to $9: 1$) gave the desired
aldehyde as a colorless oil (414 mg, 76\%). $[\propto]_{D}^{20}=+17.7\left(\mathrm{c}=1.105, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (ddd, $J=14.4,8.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{ddd}, J=14.0,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.5,166.8,145.2$, $122.9,74.1,72.8,68.4,51.4,42.8,41.6,41.1,38.6,36.9,25.8,18.0,13.8,-4.5,-4.5 \mathrm{ppm}$. IR (film): \tilde{v} $=2951,2939,2856,1725,1660,1462,1436,1376,1330,1255,1175,1122,1072,853,776 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%)=328(14), 327$ (60), 309 (29), 235 (20), 229 (49), 227 (16), 203 (51), 201 (22), 199 (22), 185 (15), 183 (36), 175 (16), 157 (33), 155 (13), 153 (15), 151 (17), 145 (30), 143 (10), 129 (33), 109 (15), 107 (23), 101 (48), 97 (29), 93 (29), 89 (22), 85 (31), 83 (25), 81 (36), 79 (15), 75 (100), 73 (54), 67 (17), 59 (27), 43 (17), 41 (25). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}$: 407.2224; found: 407.2224.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R,E)-4-iodo-2-methylbut-3-en-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (16). A flame-dried Schlenk tube was charged with
 $\mathrm{CrCl}_{2} \cdot$ 1.7 THF ($1.21 \mathrm{~g}, 4.94 \mathrm{mmol}$) which was suspended in degassed THF $(11.5 \mathrm{~mL})$. The suspension was cooled to $-8^{\circ} \mathrm{C}$, before solid $\mathrm{CHI}_{3}(642 \mathrm{mg}$, 1.63 mmol) was added under vigorous stirring, causing a color change from green-grey to brown. After 5 min , a solution of aldehyde $\mathbf{1 5}$ (190 mg , 0.494 mmol) in degassed THF ($1 \mathrm{~mL}+2 \times 0.5 \mathrm{~mL}$ rinse) was added dropwise.

After 3 h at $-8^{\circ} \mathrm{C}$, the reaction was quenched by addition of aq. serine $/ \mathrm{KHCO}_{3}$ solution $(1 \mathrm{M}, \mathrm{pH}=8$, $25 \mathrm{~mL})$ and hexanes/EtOAc (1:1, 40 mL). The mixture was allowed to warm to room temperature and was vigorously stirred for 30 min . After phase separation, the deep violet aqueous phase was extracted with hexanes/EtOAc $(1: 1,3 \times 40 \mathrm{~mL})$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 100:0 (until all CHI_{3} was removed) to $99: 1$ to $49: 1$ to $39: 1$ to $29: 1$) to yield the desired (E)-vinyl iodide as a colorless oil ($181 \mathrm{mg}, 72 \%$) along with the isomeric (Z)-vinyl-iodide ($18.8 \mathrm{mg}, 8 \%$). $[\propto]_{D}^{20}=-29.6$ ($\mathrm{c}=1.20$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.94(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{dd}, J=14.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.25$ (dddd, $J=10.0,8.4,4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{ddd}, J=13.8,8.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, J=13.9,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.97$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,152.0$, $145.4,122.8,74.1,73.3,73.2,68.6,51.4,41.9,41.6,41.3,38.7,37.1,25.8,19.1,18.1,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2949,2929,2856,1725,1660,1435,1376,1329,1269,1255,1174,1069,950,836,775$, $670 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=452$ (23), 451 (100), 229 (47), 197 (11), 181 (37), 169 (10), 157 (11), 131 (34), 129 (31), 101 (19), 93 (12), 89 (13), 75 (28), 73 (21), 59 (11). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{SiINa}$: 531.1398; found: 531.1402 .

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-4-iodo-2-methylbut-3-en-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-16). Prepared analogously from aldehyde 11-epi-15
 ($404 \mathrm{mg}, 1.05 \mathrm{mmol}$) as a mixture of olefin isomers $(384 \mathrm{mg}, 72 \%, E / Z=$ 10:1). An aliquot ($340 \mathrm{mg}, 0.669 \mathrm{mmol}$) was purified by preparative HPLC (2 runs with 170 mg each, Nucleodur C18 HTec $10 \mu \mathrm{~m}$, length: 250 mm , \varnothing : $40 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=93: 7,75 \mathrm{~mL} / \mathrm{min}$) to give the desired (E)-isomer as a colorless syrup $(286 \mathrm{mg}, 84 \%) .[\alpha]_{D}^{20}=+92.8\left(\mathrm{c}=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.95(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=14.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=$ $14.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (dt, $J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{dddd}, J=11.5,8.2,4.3,1.9 \mathrm{~Hz}$, 1 H), 3.18 (dddd, $J=12.0,10.4,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{tdd}, J=9.2,6.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dddd}, J=$ $15.3,8.4,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dddd, $J=9.1,7.1,3.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80-1.64$ (m, 2H), 1.50 (ddd, J $=14.2,10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,151.2,145.9,122.6,74.4,74.3,73.2,68.5,51.5,42.4$, $41.9,41.5,38.6,37.4,25.8,20.6,18.1,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2950,2928,2855,1724,1660$, 1435, 1375, 1253, 1219, 1175, 1156, 1126, 1067, 987, 955, 869, 834, 774, $669 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / z(\%)$ $=452$ (24), 451 (100), 229 (41), 181 (22), 131 (26), 129 (20), 101 (11), 75 (14), 73 (10). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{SiINa}$: 531.1398; found: 531.1393.

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((R,E)-2-methylhept-3-en-5-yn-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate ((E)-17). A flame-dried two-necked round-bottom flask
 equipped with a reflux condenser was charged with 1-propynylsodium ($42.1 \mathrm{mg}, 0.677 \mathrm{mmol}$), which was suspended in degassed THF (4 mL). Trimethyl borate ($76.9 \mu \mathrm{~L}, 0.677 \mathrm{mmol}$) was added dropwise via syringe at rt. After stirring for $20 \mathrm{~min}, \quad\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(42.5 \mathrm{mg}$, 0.0521 mmol) was added, causing the reaction mixture to turn dark red. Next, a solution of (E)-vinyl iodide $\mathbf{1 6}(265 \mathrm{mg}, 0.521 \mathrm{mmol})$ in degassed THF ($3 \mathrm{~mL}+1 \mathrm{~mL}$ rinse) was added and the mixture stirred at $65^{\circ} \mathrm{C}$. After 2 h , the pale orange mixture was allowed to cool to ambient temperature, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($3 x 20 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash chromatography (hexanes/EtOAc 49:1 to 39:1 to 29:1) to give the title compound as a pale yellow oil ($177 \mathrm{mg}, 81 \%$). $[\propto]_{D}^{20}=-30.0$ (c $=$ $0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.94(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=15.9$, $7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dqd}, J=15.9,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dddd}, J=11.2,7.4,5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.25(\mathrm{~m}, 3 \mathrm{H})$, $1.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{dt}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dddd}, J=$ $7.1,7.1,7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ (ddd, $J=13.6,7.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,148.5,145.5$,
$122.8,108.2,84.4,78.3,74.1,73.2,68.6,51.4,42.3,41.5,41.3,38.7,33.4,25.8,19.6,18.1,4.2,-4.5$, -4.5 ppm . IR (film): $\tilde{v}=2951,2928,2856,1725,1660,1435,1376,1328,1255,1174,1068,985,962$, $836,775,670 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=420(19), 364$ (11), 363 (40), 313 (13), 288 (11), 229 (53), 189 (17), 181 (37), 171 (12), 169 (13), 159 (16), 157 (14), 145 (32), 131 (24), 129 (37), 123 (10), 121 (10), 120 (13), 119 (37), 108 (13), 105 (23), 101 (33), 97 (18), 93 (100), 91 (45), 89 (21), 81 (19), 79 (13), 77 (41), 75(48), 73 (46), 59 (17), 41 (14). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}: 443.2588$; found: 443.2592 .

Methyl (E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-2-methylhept-3-en-5-yn-1-yl)-tetrahydro-2H-pyran-2-yl)but-2-enoate (11-epi-(E)-17). Prepared analogously from vinyl iodide 11-
 epi-16 $(185 \mathrm{mg}, 1.05 \mathrm{mmol})$ as a pale yellow oil $(117 \mathrm{mg}, 76 \%) .[\propto]_{D}^{20}=$ $+93.8\left(\mathrm{c}=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.96(\mathrm{dt}, J=$ $15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=15.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=15.8,9.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dqd}, J=15.9,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H}), 3.38-$ $3.25(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dddd}, J=11.8,10.2,3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.34(\mathrm{~m}$, $2 \mathrm{H}), 2.30(\mathrm{tdd}, J=7.7,4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}$, $1 \mathrm{H}), 1.53(\mathrm{ddd}, J=14.0,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.8,148.0,145.8,122.7,109.2,84.2,78.4$, $74.1,73.3,68.6,51.4,42.9,42.0,41.4,38.6,33.9,25.8,21.1,18.1,4.2,-4.5,-4.6 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 2951, 2929, 2856, 1727, 1660, 1435, 1375, 1329, 1257, 1218, 1155, 1118, 1072, 962, 852, 837, 776 $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=420(19), 364(11), 363(40), 313(13), 288(11), 229(53), 189(17), 181$ (37), 171 (12), 169 (13), 159 (16), 157 (14), 145 (32), 131 (24), 129 (37), 123 (10), 121 (10), 120 (13), 119 (37), 107 (13), 105 (23), 101 (33), 97 (18), 93 (100), 91 (45), 89 (21), 81 (19), 79 (14), 77 (41), 75(48), 73 (46), 59 (17), 41 (14). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}$: 443.2588; found: 443.2586.

(E)-4-((2S,4R,6R)-4-((tert-Butyldimethylsilyl)oxy)-6-((R,E)-2-methylhept-3-en-5-yn-1-yl)tetra-

 hydro-2H-pyran-2-yl)but-2-enoic acid (18). KOTMS ($90 \%, 246 \mathrm{mg}, 1.73 \mathrm{mmol}$) was added to a solution of methyl ester $(E) \mathbf{- 1 7}(145 \mathrm{mg}, 0.345 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(7.0 \mathrm{~mL})$. After stirring for 1 h , additional KOTMS $(90 \%, 246 \mathrm{mg}, 1.73 \mathrm{mmol})$ was introduced and stirring of the yellow suspension continued for 5 h . Excess base was quenched with aq. $\mathrm{HCl}(0.5 \mathrm{M}, 10 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc ($5 \times 15 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue purified by flash chromatography (hexanes/EtOAc $6: 1$ with $0.1 \% \mathrm{AcOH}$) to give the desired acid as a colorless oil ($112 \mathrm{mg}, 80 \%$). As a by-product, the β, γ-olefin was isolated as a colorless oil $(9.8 \mathrm{mg}, 7 \%) .[\propto]_{D}^{20}=-28.2$ ($\mathrm{c}=1.37$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0-10.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.06(\mathrm{dt}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$
$(\mathrm{dd}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{ddd}, J=15.9,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{m}, 1 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80$ $-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{dddd}, J=7.1,7.0,7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{ddd}, J=13.6,7.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-$ $1.08(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=171.4,148.5,148.2,122.4,108.2,84.4,78.3,73.9,73.3,68.6,42.3,41.5,41.4,38.8,33.4,25.8$, 19.6, 18.1, 4.2, $-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2928,2926,2855,1698,1654,1462,1443,1376,1282$, $1255,1152,1068,960,852,835,815,774,699,669 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / z(\%)=418$ (5), 349 (8), 257 (13), 237 (24), 169 (23), 160 (12), 145 (27), 131 (33), 129 (11), 121 (10), 119 (28), 107 (12), 105 (12), 101 (24), 93 (100), 91 (37), 79 (13), 77 (37), 75 (47), 73 (32), 59 (11), 41 (11). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa}: 429.2427$; found: 429.2431 .

(E)-4-((2S,4R,6R)-4-((tert-butyldimethylsilyl)oxy)-6-((S,E)-2-methylhept-3-en-5-yn-1-yl)tetra-

hydro-2H-pyran-2-yl)but-2-enoic acid (11-epi-18). Prepared analogously from methyl ester 11-epi-
 (E)-17 (116 mg, 0.276 mmol$)$ as a colorless oil ($101 \mathrm{mg}, 88 \%$), along with the corresponding β, γ-olefin as a colorless oil ($8.2 \mathrm{mg}, 7 \%$). $[\propto]_{D}^{20}=+84.0$ $\left(\mathrm{c}=1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.6-9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.08 (dt, $J=15.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=$ $15.9,8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (ddt, $J=16.0,2.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.34$ (dddd, $J=12.6,6.1,4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dddd}, J=10.9,10.4,2.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=2.3,0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{ddd}, J=14.1$, $10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5,148.3,148.0,122.4,109.2,84.3,78.4,74.0,73.4,68.5,42.9$, $41.9,41.5,38.7,33.9,25.8,21.1,18.1,4.2,-4.5,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2952,2928,2856,1696$, $1653,1421,1375,1304,1283,1254,1154,1117,976,960,924,852,834,774,739,669 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z(\%)=418(6), 349(8), 257(13), 237(25), 169(23), 160(12), 145(27), 131(33), 129(11)$, 121 (10), 119 (28), 107 (12), 105 (11), 101 (24), 93 (100), 91 (39), 79 (13), 77 (37), 75 (49), 73 (32), 59 (12). HRMS (ESIneg): m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}$: 405.2467; found: 405.2468.

2 Synthesis of the Alcohol Fragment

3-(Benzyloxy)propanal (24). According to the procedure of Stahl et. al., ${ }^{[4]}$ a 1 L-round-bottom flask
 was charged with 3-(benzyloxy)propanol (23) (7.20 g, 43.3 mmol) and MeCN (HPLC grade, 210 mL). $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}(683 \mathrm{mg}, 2.17 \mathrm{mmol})$ and 2, ${ }^{\prime}$-bipyridine (339 mg , 2.17 mmol) were added as solids, followed by N-methyl imidazole ($346 \mu \mathrm{~L}, 4.34 \mathrm{mmol}$) and TEMPO ($339 \mathrm{mg}, 2.17 \mathrm{mmol}$). The resulting red/brown mixture was vigorously stirred open to air for 3 h until the reaction mixture turned dark green. After concentration at reduced pressure, the residue was purified by flash chromatography (hexanes/EtOAc $6: 1$ to $5: 1$ to $4: 1$) to give the desired aldehyde as a colorless oil with an unpleasant smell $(6.69 \mathrm{~g}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78(\mathrm{t}, J=$
$1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{td}, J=6.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{tt}, J=6.1,1.6 \mathrm{~Hz}$, $2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.1,137.8,128.4,127.7,127.7,73.2,63.8,43.9 \mathrm{ppm}$. IR (film): $\tilde{v}=3031,2860,2733,1721,1496,1454,1394,1362,1205,1091,1027,899,885,736,697$ $\mathrm{cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=108(79), 107(85), 92$ (17), 91 (66), 79 (100), 78 (14), 77 (56), 65 (14), 56 (29), 55 (22), 51 (18), 39 (10), 28 (11), 27 (22), 26 (11). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{H}$: 165.0916; found: 165.0914 .
(3R,4R)-1-(Benzyloxy)-4-methylhex-5-en-3-ol (25). A solution of crotylsilane $(R, R)-35^{[5]}(1.0 \mathrm{M}$ in BnO $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.62 \mathrm{mmol}, 6.62 \mathrm{~mL}$) was added dropwise at $-78^{\circ} \mathrm{C}$ via syringe to a solution of aldehyde $24(906 \mathrm{mg}, 5.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$. Next, solid $\mathrm{Sc}(\mathrm{OTf})_{3}$ $(136 \mathrm{mg}, 0.276 \mathrm{mmol})$ was added and the mixture stirred for 15 min at $-78^{\circ} \mathrm{C}$ before it was allowed to reach $0{ }^{\circ} \mathrm{C}$. Stirring was continued for 2 h . At this point, NMR analysis of an aliquot ($50 \mu \mathrm{~L}$) confirmed full consumption of the aldehyde. The mixture was concentrated and treated with aq. HCl $(1 \mathrm{M}, 70 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ under vigorous stirring for 1 h . The white precipitate formed was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ (treatment of this solid with NaOH allowed the diamine ligand to be recovered after chromatographic purification in $>90 \%$). The phases of the filtrate were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 5:1) to give the crotylated alcohol as a colorless oil ($995 \mathrm{mg}, 82 \%$ yield, 94% ee, $98: 2$ d.r.). The enantiomeric excess was determined by HPLC of the TBS ether (see conditions below). $[\propto]_{D}^{20}=+16.5\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.25(\mathrm{~m}$, $5 \mathrm{H}), 5.77(\mathrm{ddd}, J=17.7,10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.59(\mathrm{~m}, 3 \mathrm{H})$, $2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta=141.0,137.9,128.4,127.7,127.7,114.9,74.5,73.3,69.4,43.9,33.5,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3471,3031,2943,2865,1638,1496,1454,1418,1363,1206,1092,1071,1028,997,949,913$, $736,697 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=220(0.1), 165$ (3), 107 (14), 92 (13), 91 (100), 79 (7), 65 (8), 55 (7). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$: 243.1355; found: 243.1356 .
(3S,4S)-1-(Benzyloxy)-4-methylhex-5-en-3-ol (ent-25). Prepared analogously from aldehyde 24 ($1.98 \mathrm{~g}, 12.0 \mathrm{mmol})$ and crotylsilane $(S, S)-\mathbf{3 5}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 8.21 \mathrm{mmol}, 8.21 \mathrm{~mL}\right)$ as a colorless oil ($2.13 \mathrm{~g}, 80 \%$ yield, 94.6% ee, $98: 2$ d.r.). The enantiomeric excess was determined by HPLC of the TBS ether (see conditions below).
(((3R,4R)-1-(Benzyloxy)-4-methylhex-5-en-3-yl)oxy)(tert-butyl)dimethylsilane (26). TBSOTf

$(782 \mu \mathrm{~L}, 3.40 \mathrm{mmol})$ and 2,6-lutidine $(463 \mu \mathrm{~L}, 3.98 \mathrm{mmol})$ were added to a solution of alcohol $25(625 \mathrm{mg}, 2.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$
solution (30 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 20 \mathrm{~mL})$. The combined organic extracts were washed with brine $(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 35:1) yielded the target silyl ether as a colorless oil ($908 \mathrm{mg}, 96 \%$) $[\propto]_{D}^{20}=+37.4\left(\mathrm{c}=1.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{ddd}, J=17.3,10.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.25(\mathrm{~m}$, $1 \mathrm{H}), 1.75(\mathrm{dtd}, J=13.9,7.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{ddt}, J=13.9,7.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.8,138.5$, $128.3,127.6,127.5,114.2,72.9,72.9,67.1,43.0,33.4,25.9,18.1,14.9,-4.3,-4.6 \mathrm{ppm}$. IR (film) : $\tilde{v}=$ 2955, 2928, 2885, 2856, 1472, 1461, 1455, 1361, 1253, 1092, 1050, 1028, 1005, 912, 835, 774, 733, $696 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{EI}) m / z(\%)=279(11), 173$ (21), 131 (8), 91 (100), 73 (13). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}: 357.2220$; found: 357.2219 . HPLC: 150 mm Chiralcel OJ-3R ($(4.6 \mathrm{~mm}$), $\mathrm{MeCN} /$ water $70: 30,0.5 \mathrm{~mL} / \mathrm{min}, 308 \mathrm{~K}, 9.2 \mathrm{MPa}: \mathrm{R}_{\mathrm{t}}=12.64 \mathrm{~min}$ (major syn), 14.10 min (anti), 15.27 min (minor syn).

(2S,3R)-5-(Benzyloxy)-3-((tert-butyldimethylsilyl)oxy)-2-methylpentanal (27). The terminal alkene
 $27(900 \mathrm{mg}, 2.67 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting solution cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was bubbled through the solution ($\sim 30 \mathrm{~g} / \mathrm{Nm}^{3}$) until TLC analysis showed complete conversion of the alkene (30 min) and the solution turned blue. Argon was then bubbled for 10 min through the solution, which turned colorless. Triphenylphosphine ($842 \mathrm{mg}, 3.21 \mathrm{mmol}$) was added as a solid and the reaction mixture was allowed to warm to ambient temperature and stirred for 3.5 h . The volatiles were then removed under reduced pressure and the residue purified by flash chromatography (hexanes/EtOAc $29: 1$ to 19:1) to yield the desired aldehyde as a colorless liquid $(823 \mathrm{mg}, 91 \%)$ along with the benzoate as a by-product. $[\propto]_{D}^{20}=+42.5(\mathrm{c}=1.34$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.76(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=7.3,5.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.46$
(qdd, $J=6.9,3.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.1,138.3,128.4,127.6,73.0,69.3,66.6$, 51.6, 34.6, 25.8, 18.0, 7.9, -4.5, -4.6 ppm. IR (film): $\tilde{v}=2953,2929,2856,1725,1496,1472,1455$, 1361, 1252, 1148, 1099, 1028, 1005, 938, 834, 774, 734, $697 \mathrm{~cm}^{-1} . \operatorname{MS}(E I) m / z(\%)=279(1), 187$ (4), 173 (9), 145 (10), 131 (16), 115 (5), 92 (9), 91 (100), 59 (5). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$: 359.2013; found: 357.2010.
(3R,4S)-3-((tert-Butyldimethylsilyl)oxy)-4-methyl-5-oxopentyl benzoate. Obtained as a by-product
 from the reaction described above as a colorless oil ($37 \mathrm{mg}, 4 \%$) ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=9.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{dt}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{qdd}, J=$ $7.0,3.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dddd}, J=14.1,7.8,6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddt}, J=14.3,7.7,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=204.6,166.4,133.0,130.1,129.5,128.4,69.2,61.6,51.6,33.5,25.7,18.0,8.2,-4.5,-4.6 \mathrm{ppm} . \mathrm{IR}$ (film): $\tilde{v}=2954,2911,2876,1455,1414,1363,1238,1091,1004,911,840,725,695 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=293(1), 213(3), 201(1), 179(25), 172(14), 171$ (100), 141 (10), 127 (8), 115 (32), 105 (74), 97 (41), 91 (10), 77 (25), 59 (14). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}: 373.1806$; found: 373.1807.
(R)-tert-Butyl(oxiran-2-ylmethoxy)diphenylsilane (29). A solution of TBDPSCl (18.1 mL, O"M OtbdPs $69.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added over 15 min via a dropping funnel to a solution of (S)-glycidol (28) ($4.41 \mathrm{~mL}, 66.1 \mathrm{mmol}$) and imidazole ($5.99 \mathrm{~g}, 87.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. A white solid started to precipitate after 5 min and the reaction mixture was allowed to warm to rt. After $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 19:1 to 9:1) to give the desired silyl ether as a colorless oil $(19.5 \mathrm{~g}, 94 \%) .[\propto]_{D}^{20}=+0.9\left(\mathrm{c}=1.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{dd}, J=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{dd}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=5.2$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.6,135.5,132.3,129.7,127.0$, 64.3, 52.3, 44.4, 26.8, 19.2 ppm. IR (film): $\tilde{v}=3071,3049,2998,2930,2894,2857,1472,1427,1390$, $1361,1254,1159,1136,1111,1091,1030,980,917,823,739,700,690 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=256$ (11), 255 (53), 226 (20), 225 (100), 211 (22), 184 (16), 183 (87), 181 (20), 177 (46), 117 (38), 105 (13), 77 (99). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}$: 335.1438; found: 335.1435.
(S)-tert-Butyl(oxiran-2-ylmethoxy)diphenylsilane (ent-29). Prepared analogously from (R)-glycidol OTBDPS $(e n t-28)(3.0 \mathrm{~g}, 40.5 \mathrm{mmol})$ as a colorless oil $(12.0 \mathrm{~g}, 95 \%)$.
(R)-1-((tert-Butyldiphenylsilyl)oxy)-5-(trimethylsilyl)pent-4-yn-2-ol (29a). A solution of n - BuLi

(1.65 M in hexane, $40.6 \mathrm{~mL}, 66.9 \mathrm{mmol}$) was added dropwise via dropping funnel over 12 min to a solution of trimethylsilylacetylene $(7.17 \mathrm{~g}$, 73.0 mmol) in THF (300 mL) at $-78^{\circ} \mathrm{C}$. The resulting yellow solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, when $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(9.26 \mathrm{~mL}, 73.0 \mathrm{mmol})$ was added dropwise via syringe over 5 min . A solution of epoxide $29(18.3 \mathrm{~g}, 58.6 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was then added dropwise via syringe over 6 min and the reaction mixture allowed to stir for further 90 min . The reaction was then quenched by careful addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(300 \mathrm{~mL})$ and $\mathrm{EtOAc}(200 \mathrm{~mL})$ and the mixture subsequently warmed to ambient temperature. After phase separation, the aqeuos phase was extracted with EtOAc (2 x 200 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (short column $(\sim 9 \mathrm{~cm})$, hexanes/EtOAc 14:1) yielded the desired alcohol as a colorless oil $(21.9 \mathrm{~g}, 91 \%) .[\propto]_{D}^{20}=-5.3\left(\mathrm{c}=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.69-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.75(\mathrm{ddd}, J=10.1,4.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{ddd}, J=10.1,5.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=135.5,133.1,129.8,127.8,127.7,102.6,87.1,70.2,66.4,26.9,24.7$, $19.3,0.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3487,2958,2931,2858,2177,1472,1428,1391,1362,1249,1112$, $1188,1112,1030,1008,970,936,840,823,759,739,700 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=353(17), 272$ (12), 271 (45), 242 (21), 241 (100), 223 (12), 221 (9), 211 (6), 200 (13), 199 (74), 193 (13), 163 (31), 105 (6), 73 (14). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}$: 433.1990; found: 433.1987.
(R)-1-((tert-Butyldiphenylsilyl)oxy)-5-(trimethylsilyl)pent-4-yn-2-ol (29b). The secondary alcohol
 29a ($21.8 \mathrm{~g}, 53.1 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$ and the solution cooled to $15^{\circ} \mathrm{C}$. Potassium carbonate $(14.6 \mathrm{~g}, 106 \mathrm{mmol})$ was added slowly and the reaction mixture stirred vigorously. After 1h, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(200 \mathrm{~mL})$ and the mixture extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue (17.5 g , 97%) thus obtained turned out to be a $8: 1$ mixture of two alkynes as the result of 1,2-silyl migration.

A part of the residue $(16.7 \mathrm{~g}, 49.3 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$, cooled to $-78{ }^{\circ} \mathrm{C}$, and treated with triethylamine ($1.16 \mathrm{~mL}, 8.4 \mathrm{mmol}$), $\mathrm{TESCl}(1.24 \mathrm{~mL}, 7.4 \mathrm{mmol})$ and DMAP (30 mg , 0.25 mmol). The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (200 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 200 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $13: 1$ to $4: 1$) to yield pure secondary alcohol 29b as a colorless oil $(12.7 \mathrm{~g}, 76 \%) .[\propto]_{D}^{20}=-2.5\left(\mathrm{c}=1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.62(\mathrm{~m}$, $4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.88(\mathrm{qd}, J=6.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $10.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46 \mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=135.5,135.5,133.0,133.0,129.8,127.8,80.3,70.4,70.1,66.3,26.8,23.2,19.2 \mathrm{ppm} . \mathrm{IR}$
(film): $\tilde{v}=3433,3301,3072,2931,2858,1472,1427,1391,1361,1259,1188,1111,1072,1043$, 1007, 998, 971, 936, 909, 822, 798, 739, $699 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) m / z(\%)=281(12), 242(10), 241$ (51), 200 (18), 199 (100), 181 (12), 163 (16), 139 (12), 135 (8), 105 (8), 77 (8). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{Na}$: 361.1594 ; found: 361.1591 .
(R)-8,8-Diethyl-2,2-dimethyl-3,3-diphenyl-6-(prop-2-yn-1-yl)-4,7-dioxa-3,8-disiladecane (30a).

The secondary alcohol 29b (1.96 g, 5.79 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Triethylamine $(0.96 \mathrm{~mL}, 6.93 \mathrm{mmol})$ and TESCl $(1.08 \mathrm{~mL}$, 6.40 mmol) were added slowly via syringe, followed by DMAP ($7.1 \mathrm{mg}, 58 \mu \mathrm{~mol}$) as a solid. The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ before the reaction quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(12 \mathrm{~mL})$. After separation of the layers, the aqueous phase was further extracted with $\mathrm{EtOAc}(3 \mathrm{x}$ 7 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 29:1) yielded the desired silyl ether as a colorless oil $(2.28 \mathrm{~g}, 87 \%) .[\propto]_{D}^{20}=+7.3\left(\mathrm{c}=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.63(\mathrm{~m}$, $4 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dddd}, J=16.7,5.5,2.7$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dddd}, J=16.7,5.9,2.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $9 \mathrm{H}), 0.90(\mathrm{dd}, J=8.3,7.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.54(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $135.6,135.6,133.6,133.4,129.6,127.6,81.6,71.4,69.6,66.8,26.8,24.4,19.2,6.8,4.8 \mathrm{ppm}$. IR (film): $\tilde{v}=3312,2954,2933,2876,1472,1462,1427,1390,1361,1239,1111,1072,1003,938,855$, 823, 807, 736, $699 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=423$ (19), 396 (11), 395 (30), 315 (11), 314 (30), 313 (100), 285 (30), 243 (10), 197 (15), 183 (7), 163 (10), 143 (11), 135 (32), 87 (14). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}$: 475.2459; found: 475.2461.
(R)-1-((tert-Butyldiphenylsilyl)oxy)pent-4-yn-2-yl benzoate (30b). The secondary Alcohol 29b

$(1.20 \mathrm{~g}, 3.55 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the solution cooled to
$0^{\circ} \mathrm{C}$. Triethylamine $(0.589 \mathrm{~mL}, 4.25 \mathrm{mmol})$ and benzoyl chloride $(0.452 \mathrm{~mL}$, 3.89 mmol) were added slowly via syringe, followed by DMAP ($21.7 \mathrm{mg}, 178 \mu \mathrm{~mol}$) as a solid. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 3 h at ambient temperature before the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})$. After separation of the layers, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 9:1) yielded the desired silyl ether as a pale yellow oil ($1.24 \mathrm{~g}, 79 \%$). $[\propto]_{D}^{20}=-11.7$ $\left(\mathrm{c}=1.69, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J$ $=11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=16.7,6.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=16.7,5.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ $(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8,135.5,133.1,133.0$, $130.2,129.7,129.7,128.3,127.7,127.7,79.5,72.6,70.4,63.6,26.7,20.6,19.3 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$

3305, 2958, 2931, 2858, 1718, 1602, 1588, 1472, 1451, 1427, 1391, 1361, 1315, 1266, 1176, 1108, 1069, 1047, 1026, 997, 823, 796, 738, 701, $615 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=386(16), 385(54), 304(22)$, 303 (88), 259 (17), 105 (100), 77 (11). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}_{1} \mathrm{Na}$: 465.1856; found: 465.1857.
(R)-1-((tert-Butyldiphenylsilyl)oxy)pent-4-yn-2-yl 4-nitrobenzoate (30c). The secondary Alcohol
 29b $(2.00 \mathrm{~g}, 5.91 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine $(0.98 \mathrm{~mL}, 7.1 \mathrm{mmol})$ and 4-nitrobenzoyl chloride $(1.21 \mathrm{~g}$, 6.50 mmol) were added slowly, followed by DMAP ($36.1 \mathrm{mg}, 296 \mu \mathrm{~mol}$) as a solid. The mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$ before the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL). After separation of the layers, the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 9:1) yielded the desired silyl ether as a yellow oil $(2.52 \mathrm{~g}, 87 \%) .[\propto]_{D}^{20}=-13.3\left(\mathrm{c}=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 6 \mathrm{H}), 5.36-$ $5.27(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.7,4.2 \mathrm{~Hz}), 2.79(\mathrm{ddd}, J=17.0,6.4$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=17.1,6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $163.9,150.6,135.5,135.5,133.0,132.9,130.8,129.8,127.7,127.7,123.5,79.0,73.6,70.7,63.5$, 26.7, 20.6, 19.2 ppm . IR (film): $\tilde{v}=3297,3072,2931,2858,1725,1608,1527,1472,1427,1348$, $1320,1269,1112,1102,1044,1014,997,873,823,783,741,718,701 \mathrm{~cm}^{-1} . \operatorname{MS}(E I) \mathrm{m} / \mathrm{z}(\%)=431$ (11), 430 (35), 349 (26), 348 (100), 302 (8), 150 (30), 104 (11). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}$: 475.2459; found: 475.2461 .
(5R,6R,11R)-5-(2-(Benzyloxy)ethyl)-2,2,3,3,6,15,15-heptamethyl-14,14-diphenyl-11-((triethylsilyl) oxy)-4,13-dioxa-3,14-disilahexadec-8-yn-7-yl acetate (31a). A solution of n-BuLi (1.60 M in hexane,
 $221 \mu \mathrm{~L}, 353 \mu \mathrm{~mol}$) was added dropwise over 2 min to $\mathrm{a}-78^{\circ} \mathrm{C}$ solution of terminal alkyne $\mathbf{3 0 a}(160 \mathrm{mg}, 353 \mu \mathrm{~mol})$ in THF (2.0 mL). After 25 min stirring at $-78^{\circ} \mathrm{C}$, a solution of aldehyde 27 $(120 \mathrm{mg}, 357 \mu \mathrm{~mol})$ in THF (1.0 mL) was added dropwise. After 2 h , the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for another 2 h . Acetyl chloride ($25.5 \mu \mathrm{~L}, 0.357 \mathrm{mmol}$) was added, the reaction mixture allowed to warm to ambient temperature and stirred for another 2 h . The reaction was quenched by addition of water (5 mL) and brine $(5 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography to give the desired propargylic acetate as a colorless oil as a mixture of diastereomers (2.9:1 d.r., $104 \mathrm{mg}, 35 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, only the peaks of the major isomer are listed): $\delta=7.86-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10$ $(\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}$,
$2 H), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{ddd}, J=16.6,5.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53$ (ddd, $J=16.5,5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{qdd}, J=7.1,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, only the peaks of the major isomer are listed): $\delta=169.1,139.2,136.0,136.0,134.0,133.8,130.0,128.5,128.1,128.1$, 127.7, , 127.6, 83.7, 79.9, 73.1, 72.0, 70.5, 67.4, 67.0, 66.3, 43.5, 35.4, 27.1, 26.2, 25.0, 20.6, 19.5, $18.4,10.1,7.1,5.2,-4.1,-4.2 \mathrm{ppm}$. IR (film): $\tilde{v}=2953,2931,2877,2857,1744,1472,1462,1428$, 1362, 1230, 1111, 1016, 971, 940, 862, 835, 775, 737, $701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=641$ (6), 639 (6), 623 (6), 435 (9), 383 (6), 313 (21), 285 (16), 281 (12), 279 (43), 241 (10), 237 (21), 197 (11), 181 (10), 175 (15), 174 (12), 173 (85), 171 (17), 135 (28), 131 (43), 117 (31), 115 (10), 91 (100), 87 (11). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}$: 853.4685; found: 853.4685.

($6 R, 11 R, 12 R$)-10-Acetoxy-12-(2-(benzyloxy)ethyl)-2,2,11,14,14,15,15-heptamethyl-3,3-diphenyl-

4,13-dioxa-3,14-disilahexadec-8-yn-6-yl benzoate (31b). A solution of n-BuLi (1.60 m in hexane,
 $0.111 \mathrm{~mL}, 0.178 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine $(24.7 \mu \mathrm{~L}, 0.178 \mathrm{mmol})$ in THF $(0.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting pale yellow solution was stirred for 5 min at $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$ and recooled to $-78^{\circ} \mathrm{C}$, when a solution of alkyne $\mathbf{3 0 a}(85.2 \mathrm{mg}, 0.192 \mathrm{mmol}$) in THF (0.4 mL) was added dropwise. The reaction mixture was stirred for another 20 min at $-78{ }^{\circ} \mathrm{C}$ before aldehyde $27(51.5 \mu \mathrm{~L}, 0.148 \mathrm{mmol})$ was added carefully. The mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$ and 30 min at $0^{\circ} \mathrm{C}$ before the reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(3 \mathrm{~mL})$ and EtOAc (3 mL). The aqueous phase was extracted with EtOAc (3 x 3 mL). The combined organic extracts were washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtoAc $9: 1$ to $7: 1$ to $5: 1$) and yielded a mixture of two inseparable diastereomers as a pale yellow liquid ($67 \mathrm{mg}, 58 \%, 90 \%$ purity). This mixture ($2.4: 1$ d.r., $67.0 \mathrm{mg}, 85.9 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine $(13.7 \mu \mathrm{~L}, 98.8 \mu \mathrm{~mol})$, acetic anhydride $(8.9 \mu \mathrm{~L}, 95 \mu \mathrm{~mol})$ and DMAP ($1.05 \mathrm{mg}, 8.6 \mu \mathrm{~mol}$) were added successively and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL) and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 19:1 to 14:1) yielded the desired propargylic acetate as a colorless oil (2.4:1 d.r., $42.6 \mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, the peaks of both diastereoisomers are listed): $\delta=8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{dd}, J=9.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.20(\mathrm{~m}$, $13 \mathrm{H}), 5.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.28-5.15(\mathrm{~m}, J=10.2,8.6,4.7 \mathrm{~Hz}, 1.2 \mathrm{H}), 4.45-4.33(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{td}, J=6.2,3.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.92-3.78(\mathrm{~m}, 2.2 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.93$ $(\mathrm{s}, 2.1 \mathrm{H}), 1.90(\mathrm{~s}, 0.85 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.85 \mathrm{H}), 0.87(\mathrm{~d}, J=$
$6.8 \mathrm{~Hz}, 2.1 \mathrm{H}), 0.82-0.78(\mathrm{~m}, 9 \mathrm{H}),-0.02--0.09(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, only the peaks of the major isomer are listed): $\delta=169.7,165.7,138.4,135.5,133.1,133.0,130.2,129.7,129.7$, 129.7, 128.3, 127.7, 127.7, 127.5, 127.5, 127.4, 81.4, 79.8, 72.9, 72.7, 69.9, 66.9, 65.8, 63.7, 43.0, $34.5,26.7,25.8,20.9,19.2,18.0,9.8,-4.4,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2954,2930,2856,1743,1721$, 1472, 1462, 1453, 1362, 1314, 1268, 1228, 1176, 1106, 1045, 1026, 971, 938, 835, 794, 775, 739, 700 cm^{-1}. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=843.5(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{~N}_{1} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}$: 843.4083; found: 843.4090.

($6 R, 10 R, 11 R, 12 R$)-12-(2-(Benzyloxy)ethyl)-10-hydroxy-2,2,11,14,14,15,15-heptamethyl-3,3-

diphenyl-4,13-dioxa-3,14-disilahexadec-8-yn-6-yl 4-nitrobenzoate. ${ }^{[6]}$ A solution of n-BuLi $(1.60 \mathrm{M}$

in hexane, $0.111 \mathrm{~mL}, 0.178 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine ($24.7 \mu \mathrm{~L}, 0.178 \mathrm{mmol}$) in THF $(0.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting pale yellow solution was stirred for 5 min at $-78^{\circ} \mathrm{C}, 25 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$ and recooled to $-78^{\circ} \mathrm{C}$, when a solution of alkyne $\mathbf{3 0 c}(93.7 \mathrm{mg}$, $0.192 \mathrm{mmol})$ in THF ($0.4 \mathrm{~mL}+2 \times 0.1 \mathrm{~mL}$ rinse) was introduced dropwise via syringe. The reaction mixture was stirred for another 20 min at $-78^{\circ} \mathrm{C}$ before aldehyde $27(51.5 \mu \mathrm{~L}, 0.148 \mathrm{mmol})$ was added carefully. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ before the reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and EtOAc (3 mL). The aqueous phase was further extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic extracts were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtoAc 8:1 to 7:1) to yield two separable diastereomers (major: $34.5 \mathrm{mg}, 27 \%$; minor: $17.3 \mathrm{mg}, 13 \%$) as pale yellow liquids. The two diastereomers were combined prior to the next step. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=$ $8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.21(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.40(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=16.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.9,150.5,138.3,135.5,135.5,133.0,133.0,130.8,129.8,128.3$, 127.7, 127.7, 127.5, 127.5, 123.4, 83.2, 80.3, 74.0, 72.9, 72.4, 66.7, 65.3, 63.7, 43.4, 34.4, 26.7, 25.8, $20.9,19.2,18.0,9.3,-4.3,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2953,2931,2877,2857,1744,1472,1462,1428$, 1362, 1230, 1111, 1016, 971, 940, 862, 835, 775, 737, $701 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=846.5(100$ (M+Na)). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{~N}_{1} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$: 846.3828; found: 846.3836.
($6 R, 10 R, 11 R, 12 R$)-12-(2-(Benzyloxy)ethyl)-10-hydroxy-2,2,11,14,14,15,15-heptamethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-8-yn-6-yl 4-nitrobenzoate. Obtained as the minor
 diastereomer from the reaction described above. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.31(\mathrm{p}, J=$
$5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, J$ $=7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.38(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=17.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}$, $J=16.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.9,150.5,138.3,135.6,135.5,133.0$, $130.8,129.8,128.4,127.7,127.7,127.6,127.6,123.5,83.3,80.1,73.9,73.0,71.8,66.7,65.2,63.8$, $44.0,32.4,26.7,25.8,21.0,19.2,17.9,12.5,-4.5,-4.8 \mathrm{ppm}$. IR (film): $\tilde{v}=2954,2931,2878,2857$, $1745,1471,1462,1429,1362,1231,1110,1016,972,940,863,835,776,737,702 \mathrm{~cm}^{-1} . \mathrm{MS}$ $($ ESIpos $) m / z(\%)=846.5(100(\mathrm{M}+\mathrm{Na}))$. HRMS $($ ESIpos $): m / z:$ calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{~N}_{1} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$: 846.3831; found: 846.3836.
($6 R, 11 R, 12 R$)-10-Acetoxy-12-(2-(benzyloxy)ethyl)-2,2,11,14,14,15,15-heptamethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-8-yn-6-yl 4-nitrobenzoate (31c). A mixture of the propargylic
 alcohols described above ($2.2: 1$ d.r., $39.0 \mathrm{mg}, 47.4 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine $(7.6 \mu \mathrm{~L}, \quad 55 \mu \mathrm{~mol})$, acetic anhydride $(4.9 \mu \mathrm{~L}$, $52 \mu \mathrm{~mol})$ and DMAP $(0.3 \mathrm{mg}, 2.4 \mu \mathrm{~mol})$ were added successively and the mixture stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 3 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 9:1) yielded the desired propargylic acetate as a yellow oil ($2.2: 1$ d.r., $29.5 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, only the peaks of the major isomer are listed): $\delta=8.25(\mathrm{dd}, J=8.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ $-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.36(\mathrm{~m}, 2 \mathrm{H})$, $3.95-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 3 \mathrm{H})$, $1.02(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, only the peaks of the major isomer are listed): $\delta=169.7,163.8,150.5,138.4,135.5,135.5,133.0$, $133.0,130.8,129.8,128.3,127.8,127.7,127.5,127.5,127.5,123.4,80.8,80.1,73.7,72.9,69.9,66.9$, $65.8,63.7,42.9,34.5,26.7,25.8,25.8,20.9,20.9,19.2,9.8,-4.4,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2951$, 2930, 2857, 1737, 1733, 1608, 1529, 1472, 1428, 1349, 1271, 1231, 1113, 1103, 1015, 835, 776, 741, $719,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=888.45(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{~N}_{1} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}$: 888.3934; found: 888.3936.

General Procedure for $\mathbf{A u}(\mathbf{I})$-catalyzed Meyer-Schuster rearrangement of propargylic acetate

A stock solution of the catalyst was prepared as follows: A Schlenck tube is charged with $\mathrm{Au}(\mathrm{IPr}) \mathrm{Cl}$ $36(8.5 \mathrm{mg}, 13.7 \mu \mathrm{~mol})$ and dry $\mathrm{AgSbF}_{6}(3.7 \mathrm{mg}, 13.7 \mu \mathrm{~mol})$. THF ($500 \mu \mathrm{~L}$) was added and the
resulting mixture stirred for 10 min . The white precipitate formed was allowed to settle and the supernatant used as catalyst solution (0.0274 M).

A flame-dried Young tube was charged with a solution of propargylic acetate 31 (1.00 equiv.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ ($39: 1,22.3 \mu \mathrm{~L}$ per $\mu \mathrm{mol}$ substrate). An aliquot of the catalyst solution (0.06 equiv., $2.47 \mu \mathrm{~L}$ per $\mu \mathrm{mol}$ substrate) was added via syringe. The Young tube was sealed and placed in a pre-heated oil bath and stirred at $60^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was cooled to room temperature and concentrated. The residue was purified by flash chromatography (hexanes/EtoAc 19:1 to $14: 1$ to $9: 1$) to give the desired enone.
($6 R, 11 R, 12 R, E)$-12-(2-(benzyloxy)ethyl)-2,2,11,14,14,15,15-heptamethyl-8-oxo-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl benzoate (32b). Obtained from compound 31b (42.0 mg ,
 $51.2 \mu \mathrm{~mol}$) following the general procedure as a colorless oil $(29.2 \mathrm{mg}, 73 \%) .[\propto]_{D}^{20}=+16.4\left(\mathrm{c}=0.97, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.39-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{dd}, J=16.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60(\mathrm{tt}, J=6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $4.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dt}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=16.3,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dtd}, J=14.1,7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (ddt, $J=13.9,8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.8,165.6,150.2,138.4,135.5,135.4,133.1,132.8,130.3,130.1$, $129.7,129.7,129.7,128.3,128.2,127.7,127.6,127.5,73.0,72.3,71.4,66.7,64.6,42.2,40.4,33.7$, $26.8,25.8,19.2,18.1,14.1,-4.4,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2929,2857,1720,1673,1626,1472$, 1452, 1428, 1361, 1314, 1270, 1176, 1110, 1026, 983, 938, 836, 775, 739, $701 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%)$ $=721$ (3), 599 (8), 492 (12), 435 (4), 361 (4), 303 (11), 280 (10), 279 (45), 174 (15), 173 (100), 171 (10), 135 (15), 131 (71), 117 (8), 105 (27), 101 (13), 91 (98), 73 (24). HRMS (ESIpos): $m / z: ~ c a l c d ~ f o r ~$ $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 801.3977; found: 801.3976 .
($6 R, 11 R, 12 R, E)-12-(2-(B e n z y l o x y) e t h y l)-2,2,11,14,14,15,15-h e p t a m e t h y l-8-o x o-3,3-d i p h e n y l-4,13-$ dioxa-3,14-disilahexadec-9-en-6-yl 4-nitrobenzoate (32c). Obtained from compound 31c (31.0 mg,
 $35.8 \mu \mathrm{~mol}$) following the general procedure as a colorless oil ($21.2 \mathrm{mg}, 73 \%$). $[\propto]_{D}^{20}=+8.8\left(\mathrm{c}=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{ddt}, J=8.1,2.7,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 11 \mathrm{H}), 6.95(\mathrm{dd}, J=16.1,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{dd}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{td}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dt}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dtd}, J=14.3,7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.01$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
$196.3,163.7,150.5,150.5,138.3,135.7,135.5,135.4,133.0,133.0,130.7,129.9,129.8,129.8,128.4$, $127.8,127.7,127.7,127.6,127.6,123.4,73.0,72.3,72.3,66.8,64.5,42.3,40.2,33.7,26.8,25.8,19.2$, 18.1, 14.1, $-4.4,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2954,2929,2857,1726,1672,1528,1471,1462,1348$, 1318, 1270, 1188, 1101, 1029, 1014, 982, 939, 871, 836, 775, 737, 719, 700, $614 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=846.5\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{~N}_{1} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$: 846.3828; found: 846.3824.

(R)-4-((tert-Butyldiphenylsilyl)oxy)-1-morpholino-3-((trimethylsilyl)oxy)butan-1-one (37).

According to a modified protocol from Jacobsen et. al., ${ }^{[7]}$ a flame-dried twonecked round-bottom flask was charged with $\mathrm{Co}_{2}(\mathrm{CO})_{8}(274 \mathrm{mg}, 0.8 \mathrm{mmol})$. The flask was evacuated $\left(1 \times 10^{-1} \mathrm{mbar}\right)^{[8]}$ and backfilled with CO (1 atm, from a balloon, 3 cycles). Dry EtOAc (15 mL) was introduced and the suspension stirred for 10 min , after which freshly distilled N-trimethylsilyl morpholine ($2.66 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and silylated epoxide $29(3.12 \mathrm{~g}, 10.0 \mathrm{mmol})$ were added via syringe. The brown mixture was vigorously stirred under a CO atmosphere (balloon) for 15 h , before it was concentrated. The residue was quickly purified by flash chromatography (hexanes/EtOAc $5: 1$ to $4: 1$) to yield the desired morpholine amide as a colorless oil $(3.70 \mathrm{~g}, 74 \%) .[\propto]_{D}^{20}=+21.1\left(\mathrm{c}=0.915, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43$ $-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.25(\mathrm{ddt}, J=8.5,5.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 7 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=$ $14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.1,135.6,135.6,133.4,129.7,129.7,127.7,127.7,70.7,67.8,66.9,66.7$, $46.5,41.9,37.5,26.8,26.8,19.2,0.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2958,2930,2857,1644,1460,1428,1249$, 1186, 1111, 1070, 1033, 959, 840, 824, 741, 701, $612 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=484$ (11), 444 (13), 443 (36), 442 (100), 364 (23), 271 (13), 230 (6), 193 (14), 135 (5), 114 (7), 73 (4). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 522.2466; found: 522.2465.
(S)-4-((tert-Butyldiphenylsilyl)oxy)-1-morpholino-3-((trimethylsilyl)oxy)butan-1-one (ent-37). Prepared analogously from epoxide ent-29 (3.12 g, 10.0 mmol) as a pale
 yellow oil ($3.67 \mathrm{~g}, 74 \%$).

(R)-7-((tert-Butyldiphenylsilyl)oxy)-6-hydroxyhept-2-en-4-one (39). A solution of propenylmagnesium bromide $38(0.5 \mathrm{M}$ in THF, 8.6 mL , 4.30 mmol) was added dropwise over 10 min at $0^{\circ} \mathrm{C}$ to a solution of amide 37 $(565 \mathrm{mg}, 1.131 \mathrm{mmol})$ in THF $(9 \mathrm{~mL})$ and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and slowly transferred via canula into a vigorously stirred aq. solution of $\mathrm{HCl}(0.75 \mathrm{M}, 130 \mathrm{~mL})$. The reaction flask was rinsed with $\mathrm{EtOAc}(2 \mathrm{x} 10 \mathrm{~mL})$, which was also transferred to the aqueous acid layer. After stirring for 15 min at ambient temperature, $\operatorname{EtOAc}(20 \mathrm{~mL})$ was added, the phases were separated and the aqueous phase extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The
combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $9: 1$ to $7.5: 1$ to $6: 1$) to give the desired enone as an inconsequential mixture of olefin isomers $(E / Z=2: 1,360 \mathrm{mg}, 83 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}, only the peaks assigned to the major isomer are given): $\delta=7.70-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.31$ $(\mathrm{m}, 6 \mathrm{H}), 6.84(\mathrm{dq}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dq}, J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05$ (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ only the peaks assigned to the major isomer are given): $\delta=$ $199.6,143.7,135.5,135.5,133.2,133.1,132.3,129.8,127.7,68.5,67.0,42.8,26.8,19.2,18.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3462,3071,2930,2587,1680,1663,1628,1472,1428,1362,1188,1112,969,823$, $741,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=405.2\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right), 787.3\left(85\left(\left(2 \mathrm{M}+\mathrm{Na}^{+}\right)\right.\right.$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}$: 405.1856; found: 405.1856 .

(S)-7-((tert-Butyldiphenylsilyl)oxy)-6-hydroxyhept-2-en-4-one
(ent-39).
Prepared analogously from morpholine amide ent-37 (3.67 g, 10.0 mmol) as a pale yellow oil $(E / Z=2: 1,2.21 \mathrm{~g}, 79 \%)$.
(((3R,4R)-1-(Benzyloxy)-4-methylhex-5-en-3-yl)oxy)triethylsilane (40). $\mathrm{NEt}_{3} \quad(0.951 \mathrm{~mL}$,
 $6.86 \mathrm{mmol})$ and $\mathrm{TESCl}(1.05 \mathrm{~mL}, 6.29 \mathrm{mmol})$ were added via syringe at $0^{\circ} \mathrm{C}$ to a solution of alcohol $25(1.26 \mathrm{~g}, 5.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28.6 \mathrm{~mL})$. DMAP (34.9 mg , 0.286 mmol) was then introduced and the mixture stirred for 90 min at $0^{\circ} \mathrm{C}$ and for another 30 min at RT before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$-solution. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography (hexanes/EtOAc 35:1) yielded the target silyl ether as a colorless oil $(1.72 \mathrm{~g}, 90 \%) .[\propto]_{D}^{20}=+38.6\left(\mathrm{c}=1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{ddd}, J=17.3,10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.95$ $(\mathrm{m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=8.2,4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.8$, 138.6, 128.3, 127.7, 127.5, 114.3, 73.2, 73.0, 67.2, 43.4, 33.7, 15.0, 7.0, 5.2 ppm . IR (film): $\tilde{v}=2954$, 2911, 2876, 1455, 1414, 1363, 1238, 1091, 1004, 911, 840, 725, $695 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=305(8)$, 279 (17), 173 (33), 159 (6), 117 (9), 115 (10), 91 (100), 87 (9), 59 (5). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}$: 357.2220; found: 357.2222.

(((3S,4S)-1-(Benzyloxy)-4-methylhex-5-en-3-yl)oxy)triethylsilane (ent-40).

Prepared analogously from alcohol ent-25 ($1.70 \mathrm{~g}, 7.72 \mathrm{mmol}$) as a colorless oil ($2.46 \mathrm{~g}, 91 \%$).
($6 R, 11 R, 12 R, E$)-12-(2-(Benzyloxy)ethyl)-14,14-diethyl-6-hydroxy-2,2,11-trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-8-one (41). A flame-dried two necked round-bottom flask
 equipped with a reflux condenser and a septum was charged with a solution of olefin $40(495 \mathrm{mg}, 1.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Zhan-catalyst 1B $48(39.4 \mathrm{mg}, 53.7 \mu \mathrm{~mol})$ was added and the resulting mixture was heated to $45^{\circ} \mathrm{C}$ while a solution of enone 39 ($514 \mathrm{mg}, 1.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added dropwise through the septum over the course of 1 h via syringe pump. After 16 h , the mixture was cooled to RT, another batch of Zhan-catalyst 1B 48 ($19.7 \mathrm{mg}, 26.9 \mu \mathrm{~mol}$) was added and stirring continued at $45^{\circ} \mathrm{C}$. This procedure was repeated once again after additonal stirring for 12 h . After an overall reaction time of 48 h , the mixture was concentrated and the residue purified by flash chromatography (hexanes/EtOAc 14:1 to $12: 1$ to $9: 1$) to yield the title compound as a pale orange oil ($716 \mathrm{mg}, 79 \%$). $[\alpha]_{D}^{20}=+41.2\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-$ 7.60 (ddd, $J=7.9,3.8,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{dd}, J=16.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dt}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.04$ $(\mathrm{d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.8,150.5,138.4,135.5,135.5,133.2,133.2,130.4,129.8,128.3$, 127.7, 127.7, 127.6, 73.0, 72.4, 68.5, 67.1, 66.8, 42.6, 42.6, 33.9, 26.9, 19.3, 14.2, 7.0, 5.1 ppm. IR (film): $\tilde{v}=3512,3071,2955,2932,2875,1664,1624,1456,1427,1362,1238,1186,1112,1007,823$, $739,701 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=697.5\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 697.3715; found: 697.3720.
(6S,11S,12S,E)-12-(2-(Benzyloxy)ethyl)-14,14-diethyl-6-hydroxy-2,2,11-trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-8-one (ent-41). Prepared analogously from ent-40 (2.25 g ,
 $6.43 \mathrm{mmol})$ and enone ent-39 $(2.05 \mathrm{~g}, 5.36 \mathrm{mmol})$ as a pale yellow oil ($2.65 \mathrm{~g}, 73 \%$) along with recovered enone ($255 \mathrm{mg}, 12 \%$).
($6 R, 8 R, 11 R, 12 R, E)$-12-(2-(Benzyloxy)ethyl)-14,14-diethyl-8-hydroxy-2,2,11-trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (42). A freshly prepared solution of
 $\mathrm{SmI}_{2}(0.096 \mathrm{~m}$ in THF, $3.80 \mathrm{~mL}, 0.363 \mathrm{mmol}$) was slowly added at $-50^{\circ} \mathrm{C}$ alongside the cold wall of the flask to a solution of enone $41(700 \mathrm{mg}, 1.04 \mathrm{mmol})$ and freshly distilled isobutyraldehyde ($473 \mu \mathrm{~L}, 5.19 \mathrm{mmol}$) in degassed THF $(9.4 \mathrm{~mL})$. The mixture was stirred for 1 h at $-50^{\circ} \mathrm{C}$ before it was poured into sat. aq. NaHCO_{3} solution (65 mL). The mixture was diluted with EtOAc (40 mL overall) and vigorously stirred until it reached ambient temperature. The
phases were separated and the aqueous layer was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined extracts were washed with brine (60 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. During concentration, a small amount of SiO_{2} was added and the crude product loaded on a silica gel column, from which the title compound was eluted with hexanes/EtOAc (12:1 to 9:1); colorless oil ($598 \mathrm{mg}, 78 \%$). $[\propto]_{D}^{20}=$ $+27.2\left(\mathrm{c}=1.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 11 \mathrm{H})$, 5.69 (ddd, $J=15.8,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (ddt, $J=9.4,5.5$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=9.8,6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=7.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.56(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.77-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.95-$ $0.89(\mathrm{~m}, 12 \mathrm{H}), 0.56(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0,138.5,135.6$, $135.5,133.3,133.3,133.2,131.8,129.8,129.7,128.3,127.7,127.7,127.5,73.2,73.0,71.9,68.3$, $67.2,65.7,42.0,39.0,34.2,33.7,26.7,19.2,19.2,19.0,15.3,7.0,5.2 \mathrm{ppm}$. IR (film): $\tilde{v}=3502,2956$, 2932, 2875, 1732, 1457, 1428, 1388, 1362, 1239, 1196, 1160, 1111, 1007, 975, 823, 738, 701, 612 cm^{-1}. MS (ESIpos) $m / z(\%)=769.5\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 769.4290; found: 769.4291.
($6 S, 8 S, 11 S, 12 S, E)-12-(2-(B e n z y l o x y) e t h y l)-14,14-d i e t h y l-8-h y d r o x y-2,2,11-t r i m e t h y l-3,3-$
 diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (ent-42). Prepared analogously from β-hydroxy ketone ent-41 $(2.30 \mathrm{~g}, 3.41 \mathrm{mmol})$ as a colorless oil $(1.88 \mathrm{~g}, 74 \%)$.
(6R,8R,11R,12R,E)-12-(2-(Benzyloxy)ethyl)-8-((tert-butyldiphenylsilyl)oxy)-14,14-diethyl-2,2,11-trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (42a). TBDPSCl
 $(284 \mu \mathrm{~L}, 1.09 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a solution of the homoallylic alcohol $42(584 \mathrm{mg}, 0.782 \mathrm{mmol})$ and imidazole ($90.5 \mathrm{mg}, 1.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$. After 5 min , the mixture was allowed to reach ambient temperature and stirring was continued for 17 h before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 20 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 39:1) to afford the title compound as a colorless syrup ($671 \mathrm{mg}, 87 \%$). $[\propto]_{D}^{20}=+36.7\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.34(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dd}, J=15.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{td}, J=7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{hep}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=14.0,7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.1,7.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 18 \mathrm{H}), 0.89(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta=176.1,138.7,136.0,135.9,135.6,135.5,134.7,134.0,133.5,133.5,133.3,129.6,129.6,129.4$, $129.2,128.3,127.6,127.6,127.4,127.2,73.0,72.9,72.0,71.4,67.2,65.2,41.7,39.8,34.1,33.5,27.0$, $26.8,19.2,19.0,18.9,15.0,7.0,5.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2932,2875,2858,1734,1471,1427$, 1387, 1361, 1259, 1191, 1157, 1105, 1007, 977, 822, 736, $698 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=927$ (2), 820 (2), 561 (2), 509 (6), 493 (7), 469 (4), 467 (4), 377 (5), 322 (3), 319 (3), 280 (22), 279 (97), 269 (26), 199 (16), 174 (15), 173 (100), 171 (14), 135 (22), 131 (44), 91 (57), 73 (16). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}$: 1007.5468; found: 1007.5473.

($6 R, 8 R, 11 R, 12 R, E)-12-(2-(B e n z y l o x y) e t h y l)-8-(($ tert -butyldiphenylsilyl)oxy)-14,14-diethyl-2,2,11-trimethyl-3,3-diphenyl-4,13-dioxa-3,14-disilahexadec-9-en-6-yl isobutyrate (ent-42a). Prepared analogously from alcohol ent-42 (1.82 g, $2.44 \mathrm{mmol})$ as a colorless oil ($1.96 \mathrm{~g}, 82 \%$).
($6 R, 8 R$)-8-((3R,4R,E)-6-(Benzyloxy)-4-hydroxy-3-methylhex-1-en-1-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (43). Camphorsulfonic acid
 $(47.7 \mathrm{mg}, 0.205 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a solution of the trissilylether 42a ($675 \mathrm{mg}, 0.685 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1$, 12.6 mL). The resulting mixture was stirred for 90 min before the reaction was carefully quenched with sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ solution. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a colorless oil, which was purified by flash chromatography (hexanes/EtOAc $8: 1$) to give the title compound as a colorless oil ($576 \mathrm{mg}, 97 \%$). $[\propto]_{D}^{20}=+22.9\left(\mathrm{c}=1.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.25$ $(\mathrm{m}, 18 \mathrm{H}), 5.35(\mathrm{dd}, J=15.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=15.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 4.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 2.51-$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{ddd}, J=11.5,7.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{dt}, J=13.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.29(\mathrm{~m}$, $3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 18 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 176.2,138.0,135.9,135.9,135.6,135.5,134.6,134.2,133.6,133.4,133.4,132.8$, $129.6,129.6,129.6,129.3,128.4,127.7,127.6,127.5,127.3,74.0,73.3,72.0,69.3,65.2,42.3,39.7$, $34.1,33.5,26.9,26.7,19.2,19.0,19.0,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3511,2960,2931,2858,1734,1472$, $1427,1389,1361,1260,1193,1158,1111,1082,976,822,739,701 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=527(5)$, 467 (8), 393 (28), 363 (27), 319 (11), 271 (12), 270 (18), 269 (81), 209 (11), 200 (13), 199 (71), 197 (19), 135 (48), 108 (21), 91 (100), 81 (11), 43 (15). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 870.4711, found: 870.4715.
($6 R, 8 R$)-8-((3R,4R,E)-6-(Benzyloxy)-4-hydroxy-3-methylhex-1-en-1-yl)-2,2,11,11-tetramethyl$\mathbf{3 , 3 , 1 0 , 1 0}$-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (ent-43). Prepared analogously
 from the tris-silylether ent-42a $(1.93 \mathrm{~g}, 1.96 \mathrm{mmol})$ as a colorless oil ($1.69 \mathrm{~g}, 99 \%$).
($6 R, 8 R$)-8-($(2 S, 3 R, 4 S, 5 R)$-5-(2-(Benzyloxy)ethyl)-4-methyl-3-(phenylselanyl) tetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate
 (44). According to a modified protocol from Denmark, ${ }^{[9]}$ a solution of alcohol $43(574 \mathrm{mg}, 0.659 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was prepared and cooled to $-40^{\circ} \mathrm{C}$. N-(Phenylseleno)phthalimide ($239 \mathrm{mg}, 0.791 \mathrm{mmol}$) followed by a solution of triphenylphosphine sulfide $(23.3 \mathrm{mg}, 79.1 \mu \mathrm{~mol})$ and trifluoroacetic acid $(56.7 \mu \mathrm{~L}, 0.791 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added via syringe over 5 min . After complete addition, the mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirring was continued for 3 h before the mixture was poured into a stirred emulsion of sat. aq. NaHCO_{3} solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 15 mL), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. ${ }^{1} \mathrm{H}$ NMR and HPLC analysis of the crude mixture revealed a d.r. of $14: 1$. The residue was purified by flash chromatography (hexanes/EtOAc $100: 0$ to $49: 1$ to $29: 1$ to $24: 1$) to give the cyclized product as a colorless oil ($560 \mathrm{mg}, 83 \%$ yield, $14: 1$ d.r.). An analytically pure sample was obtained by preparative HPLC (Triart C18 $5 \mu \mathrm{~m}, 12 \mathrm{~nm}, 150 \mathrm{x} 30 \mathrm{~mm}, 100 \% \mathrm{MeCN}, 35^{\circ} \mathrm{C}, 35 \mathrm{bar}, 35 \mathrm{~mL} / \mathrm{min}$). $[\propto]_{D}^{20}=+1.1(\mathrm{c}$ $\left.=0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.44-$ $7.24(\mathrm{~m}, 19 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{ddd}, J=8.2,5.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{ddd}, J=6.9,6.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.9,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{dd}, J=6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ (hept, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=14.6,9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddq}, J=12.4,7.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddd, J $=14.7,7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ $(\mathrm{s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) 0.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.0,138.7$, $136.1,135.8,135.6,135.6,134.4,134.4,133.6,133.4,133.3,129.6,129.6,129.3,129.2,129.1,128.3$, $127.7,127.7,127.6,127.4,127.3,127.1,85.8,72.9,72.7,71.6,67.9,65.3,49.6,44.6,36.1,34.1,30.6$, 29.7, 27.1, 26.7, 19.7, 19.2, 19.0, 18.8, 14.9 ppm . IR (film): $\tilde{v}=2961,2929,2855,1733,1472,1427$, 1361, 1260, 1192, 1111, 1021, 821, 802, 738, $701 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=970$ (6), 969 (9), 883 (9), 882 (13), 881 (22), 880 (8), 879 (11), 805 (11), 724 (11), 723 (11), 563 (11), 467 (10), 361 (25), 349 (11), 319 (13), 296 (11), 295 (45), 270 (23), 269 (100), 241 (14), 239 (34), 200 (13), 199 (73), 197 (30), 136 (12), 135 (93), 91 (84), 43 (13). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{SeNa}$: 1049.4081; found: 1049.4072.
($6 R, 8 R$)-8-((2R,3S,4S,5R)-5-(2-(Benzyloxy)ethyl)-4-methyl-3-(phenylselanyl) tetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate.

Obtained as the minor isomer by preparative HPLC (conditions see above) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-$ $7.67(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.49$ $(\mathrm{m}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 17 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.06-4.99(\mathrm{~m}$, $1 \mathrm{H}), 4.48(\mathrm{~d}, ~ J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{ddd}, J=7.9,4.1,1.4,1 \mathrm{H}), 3.98(\mathrm{ddd}, J=8.8,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{dd}, J=9.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, J=9.1,7.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $(\mathrm{dd}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (hept, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=14.5,9.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (ddd, $J=13.7,7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.1,138.5,136.1,136.0$, $135.6,135.5,134.2,133.5,133.4,133.4,133.1,132.5,130.9,130.6,129.6,129.6,129.4,129.0,128.8$, $128.4,127.7,127.6,127.6,127.5,127.3,127.0,83.3,78.7,73.0,71.9,71.6,68.0,65.3,48.1,40.2$, $34.0,33.6,31.9,27.1,26.7,19.4,19.2,19.0,18.9,11.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2962,2930,2854,1732$, 1472, 1427, 1360, 1260, 1192, 1110, 1021, 823, 799, 738, $701 \mathrm{~cm}^{-1} . \operatorname{MS}(E I) \mathrm{m} / \mathrm{z}(\%)=970(6), 969$ (9), 883 (10), 882 (14), 881 (22), 880 (8), 879 (11), 805 (11), 724 (11), 723 (11), 563 (11), 467 (11), 361 (25), 349 (11), 319 (13), 296 (12), 295 (47), 270 (23), 269 (100), 241 (14), 239 (34), 200 (13), 199 (73), 197 (30), 135 (93), 91 (84). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{SeNa}$: 1049.4081; found: 1049.4075.

Additional support for this assignment was obtained by comparison of the chemical shift of H 6 of the two isomers. As reported in the literature, ${ }^{[10]}$ the chemical shift is strongly dependent on the number of syn-alkyl groups, which cause an up-field shift.

Compound	\# of $\boldsymbol{s y n}$-alkyl groups	$\boldsymbol{\delta}(\mathbf{H 6}) / \mathbf{p p m}$	$\boldsymbol{\delta}$ (Lit.) ${ }^{[10]} / \mathbf{p p m}$
$\mathbf{2 7}$ (major isomer)	2	2.93	2.80
minor isomer	1	3.67	3.50
-	0	-	3.90

(6S,8S)-8-((2R,3S,4R,5S)-5-(2-(Benzyloxy)ethyl)-4-methyl-3-(phenylselanyl) tetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate

(ent-44). Prepared analogously from alcohol ent-43 (1.59 g, 1.82 mmol) as a colorless oil ($1.53 \mathrm{~g}, 82 \%$).
$(6 R, 8 R)-8-((2 R, 4 R, 5 R)-5-(2-(B e n z y l o x y) e t h y l)-4-m e t h y l t e t r a h y d r o f u r a n-2-y l)-2,2,11,11-t e t r a-$ methyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (44a). A flame-dried
 two-necked round-bottom flask equipped with a reflux condenser was charged with a solution of selenoether $44(560 \mathrm{mg}, 0.546 \mathrm{mmol})$ in degassed toluene $(22 \mathrm{~mL}) .(n-\mathrm{Bu})_{3} \mathrm{SnH}(177 \mu \mathrm{~L}, 0.655 \mathrm{mmol})$ was added via syringe, followed by solid AIBN $(0.9 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 90 min under Argon, allowing the generated N_{2} to evaporate. After cooling to room temperature, the mixture was concentrated and the residue purified by flash chromatography (hexanes/EtOAc 100:0 to $49: 1$ to $39: 1$ to $29: 1$) to yield the title compound as a sticky colorless syrup ($440 \mathrm{mg}, 93 \%$ yield, single diastereomer). $[\alpha]_{D}^{20}=+34.1\left(\mathrm{c}=0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.61(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.24-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, $3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (dddd, $J=13.3,11.7,6.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=12.3,7.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, J=14.1,9.1,0.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72(\mathrm{ddd}, J=14.4,7.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.99(\mathrm{~m}, 25 \mathrm{H}), 0.61(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,138.8,136.2,135.9,135.6,135.5,135.0$, $133.8,133.5,133.4,129.6,129.3,129.0,128.3,127.7,127.6,127.6,127.6,127.4,127.3,127.0,80.8$, $78.3,73.2,72.8,71.3,68.2,63.4,36.1,35.6,35.2,34.0,31.0,27.2,26.7,19.6,19.3,19.0,18.8,15.6$ ppm. IR (film): $\tilde{v}=2959,2930,2856,1734,1471,1427,1388,1361,1258,1192,1157,1110,998$, 937, 822, 738, $700 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=814$ (16), 813 (25), 726 (18), 725 (29), 563 (14), 558 (17), 557 (37), 469 (12), 319 (12), 301 (13), 296 (13), 295 (47), 271 (11), 270 (23), 269 (100), 241 (24), 239 (29), 200 (14), 199 (77), 197 (25), 163 (13), 136 (10), 135 (80), 91 (96). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 893.4603 ; found: 893.4594.
(6S,8S)-8-((2S,4S,5S)-5-(2-(Benzyloxy)ethyl)-4-methyltetrahydrofuran-2-yl)-2,2,11,11-tetra-methyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (ent-44a). Prepared
 analogously from selenoether ent $-44(1.53 \mathrm{~g}, 1.49 \mathrm{mmol})$ as a colorless oil ($1.26 \mathrm{~g}, 97 \%$, single d.r.).
$(6 R, 8 R)-8-((2 R, 4 R, 5 R)-5-(2-H y d r o x y e t h y l)-4-m e t h y l t e t r a h y d r o f u r a n-2-y l)-2,2,11,11-t e t r a m e t h y l-~$ $\mathbf{3 , 3 , 1 0 , 1 0}$-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (44b). A flame-dried Schlenk
 tube was charged with $\operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} . \%, 35.5 \mathrm{mg}, 50.5 \mu \mathrm{~mol})$. The flask was evacuated ($5 \times 10^{-1} \mathrm{mbar}$) and backfilled with H_{2} from a balloon (two cycles). EtOH (27 mL) was added and the suspension vigorously stirred for 10 min before a solution of benzyl ether 44a $(440 \mathrm{mg}, 0.505 \mathrm{mmol})$ in EtOAc $(3 \mathrm{~mL})$ was introduced. After stirring for 7.5 h under a H_{2} atmosphere (balloon), the mixture was filtered through a short pad of Celite ${ }^{\circledR}$ that was carefully rinsed with EtOAc (3 x 20 mL). The combined filtrates were concentrated and the residue was purified by flash chromatography (hexanes/EtOAc $4: 1$) to yield the desired product as a white foam (345 mg , $88 \%) .[\propto]_{D}^{20}=+24.2\left(\mathrm{c}=0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.44-$ $7.28(\mathrm{~m}, 12 \mathrm{H}), 5.12(\mathrm{ddd}, J=9.6,4.8,4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.49$ $-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dddd}, J=14.1,14.1,7.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89$ $(\mathrm{m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=14.3,7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.24$ $-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.00(\mathrm{~m}, 24 \mathrm{H}), 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $176.1,136.1,135.8,135.6,135.5,134.7,133.5,133.4,133.3,129.6,129.6,129.5,129.2,127.6,127.6$, $127.4,127.2,80.9,80.3,72.2,71.2,65.3,61.4,35.5,35.3,35.2,34.0,32.9,27.1,26.7,19.5,19.2$, 19.0, 18.8, 15.5 ppm . IR (film): $\tilde{v}=3487,2960,2930,2857,1735,1472,1428,1388,1259,1193$, $1158,1112,998,823,740,702,610 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=723(12), 646$ (10), 645 (18), 636 (13), 635 (23), 563 (12), 558 (20), 557 (41), 437 (16), 379 (31), 319 (13), 301 (18), 295 (34), 270 (18), 269 (82), 241 (32), 239 (32), 200 (18), 199 (97), 197 (38), 183 (12), 181 (14), 163 (14), 145 (11), 139 (12), 137 (12), 136 (14), 135 (100), 85 (29), 71 (14), 43 (26). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 803.4134; found: 803.4135.
($6 S, 8 S$)-8-((2S,4S,5S)-5-(2-Hydroxyethyl)-4-methyltetrahydrofuran-2-yl)-2,2,11,11-tetramethyl-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (ent-44b). Prepared
 analogously from benzyl ether ent-44a ($1.25 \mathrm{~g}, 1.43 \mathrm{mmol}$) as a colorless oil ($907 \mathrm{mg}, 81 \%$).
$(6 R, 8 R)-2,2,11,11-T e t r a m e t h y l-8-((2 R, 4 R, 5 R)-4-m e t h y l-5-(2-o x o e t h y l) t e t r a h y d r o f u r a n-2-y l)-~$ 3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (45). A solution of alcohol
 44b ($341 \mathrm{mg}, 0.437 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}+2 \times 0.5 \mathrm{~mL}$ rinse) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of Dess-Martin periodinane ($463 \mathrm{mg}, 1.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. After complete addition, the ice bath was removed and stirring continued at rt for 4.5 h before the
reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and sat. NaHCO_{3} solution (1:1, 20 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified flash chromatography (short column, hexanes/EtOAc 19:1) to give the desired aldehyde as a colorless sticky syrup ($310 \mathrm{mg}, 91 \%$). $[\alpha]_{D}^{20}=+35.2$ ($\mathrm{c}=0.57$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.13(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.46-7.25$ $(\mathrm{m}, 12 \mathrm{H}), 5.18(\mathrm{dddd}, J=9.5,4.8,4.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=8.8,6.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.63$ $(\mathrm{m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=8.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=16.2,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, J=14.2,9.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=14.4,7.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=202.1,176.1,136.1,135.7,135.6,135.5,134.8,133.7,133.4,133.4,129.7,129.4,129.1$, $127.7,127.7,127.3,127.0,81.3,76.3,72.9,71.2,65.3,44.8,35.8,35.5,35.2,34.0,27.1,26.7,19.6$, 19.3, 19.0, 18.8, 15.6 ppm . IR (film): $\tilde{v}=2959,2929,2856,1729,1472,1427,1388,1240,1192$, $1158,1111,998,822,740,701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=721$ (7), 635 (16), 634 (42), 633 (80), 563 (7), 377 (15), 319 (11), 295 (31), 270 (22), 269 (100), 241 (14), 239 (21), 225 (10), 200 (12), 199 (66), 197 (29), 183 (13), 179 (15), 163 (12), 136 (10), 136 (78), 43 (19). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 801.3977; found: 801.3977.
($6 S, 8 S$)-2,2,11,11-Tetramethyl-8-((2S,4S,5S)-4-methyl-5-(2-oxoethyl)tetrahydrofuran-2-yl)-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (ent-45). Prepared analogously
 from alcohol ent-44b ($907 \mathrm{mg}, 1.16 \mathrm{mmol}$) as a colorless oil (847 mg , 94\%).
($6 R, 8 R$)-2,2,11,11-Tetramethyl-8-(($2 R, 4 R, 5 R$)-4-methyl-5-(prop-2-yn-1-yl)tetrahydrofuran-2-yl)-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (46). A flame-dried Schlenk
 tube was charged with dimethyl-1-diazo-2-oxopropylphosphonate (49) ($306 \mathrm{mg}, 1.592 \mathrm{mmol}$) and THF (8 mL). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before a freshly prepared solution of $\mathrm{NaOMe}^{[11]}$ ($0.5 \mathrm{M}, 3.18 \mathrm{~mL}, 1.592 \mathrm{mmol}$) was added over the course of 10 min via syringe, causing the mixture to turn intensively yellow. After stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$, a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of aldehyde $45(310 \mathrm{mg}, 0.398 \mathrm{mmol})$ in THF ($5 \mathrm{~mL}+2 \times 1 \mathrm{~mL}$ rinse) was added slowly via canula. The reaction flask was then equipped with an Argon bubbler to allow the generated N_{2} to evaporate. The mixture was slowly warmed to $-50^{\circ} \mathrm{C}$, causing a heavy gas evolution. After stirring for 90 min at $-50^{\circ} \mathrm{C}$, the reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc ($4 \times 30 \mathrm{~mL}$). The combined
extracts were washed with brine (35 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The orange residue was purified by flash chromatography (hexanes/EtOAc 39:1) to yield the desired alkyne as a white foam that collapsed upon storage ($287 \mathrm{mg}, 93 \%$). $[\alpha]_{D}^{20}=+19.4\left(\mathrm{c}=1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.25(\mathrm{~m}, 12 \mathrm{H}), 5.13(\mathrm{dddd}, J=9.5,4.7,4.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{hep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd, $J=$ $14.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (ddd, J $=14.5,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 24 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.1,136.1,135.9,135.6,135.5,134.7,134.0,133.5,133.4,129.6$, 129.6, 129.3, 129.1, 127.7, 127.6, 127.3, 127.0, 81.6, 81.0, 79.3, 72.7, 71.2, 69.1, 65.3, 35.2, 35.1, 34.0, 27.2, 26.7, 20.6, 19.6, 19.2, 19.0, 18.8, 14.8 ppm. IR (film): $\tilde{v}=2960,2930,2857,1735,1472$, $1428,1388,1260,1192,1158,1112,1006,822,740,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=797.5(100$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}: 797.4028$; found: 797.4028.
($6 S, 8 S$)-2,2,11,11-Tetramethyl-8-((2S,4S,5S)-4-methyl-5-(prop-2-yn-1-yl)tetrahydrofuran-2-yl)-
 3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-yl isobutyrate (ent-46). Prepared analogously from aldehyde ent-45 $(847 \mathrm{mg}$, 1.087 mmol) as a colorless syrup ($809 \mathrm{mg}, 96 \%$).
$(6 R, 8 R)-2,2,11,11-T e t r a m e t h y l-8-((2 R, 4 R, 5 R)-4-m e t h y l-5-(p r o p-2-y n-1-y l) t e t r a h y d r o f u r a n-2-y l)-~$ 3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-ol (47). A solution of DIBAI-H in toluene
 $(1.0 \mathrm{M}, 1.10 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of ester $46(285 \mathrm{mg}, 0.368 \mathrm{mmol})$ in toluene $(24 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min at this temperature. The mixture was then poured via canula into a stirred sat. solution of Rochelle salt (150 mL), the flask was rinsed with EtOAc ($2 \times 20 \mathrm{~mL}$) and the emulsion was vigorously stirred at ambient temperature for 4 h . The layers were separated, the aqueous phase was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by flash chromatography (hexanes/EtOAc $24: 1$ to 19:1) to give the title compound as a sticky colorless syrup ($252 \mathrm{mg}, 97 \%$). $[\propto]_{D}^{20}=+18.2\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.75-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 12 \mathrm{H}), 4.06(\mathrm{ddd}, J=6.7,6.6,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{hep}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.13 (ddd, $J=16.7,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (ddd, $J=16.6,7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (ddd, $J=12.5,7.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{ddd}, J=14.3,9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=14.4,6.9$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{ddd}, J=12.5,9.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.1,136.0,135.5,135.5,134.2,134.1,133.4,133.4,129.7$, 129.4, 129.4, 127.7, 127.4, 127.2, 81.6, 81.0, 79.5, 73.2, 69.3, 68.8, 68.3, 36.6, 35.2, 35.1, 27.1, 26.8,
20.8, 19.6, 19.2, 14.8 ppm . IR (film): $\tilde{v}=3311,2957,2928,2856,1472,1469,1427,1390,1362$, $1269,1189,1111,999,822,739,701 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=570(22), 569$ (48), 491 (8), 417 (7), 319 (18), 299 (10), 259 (12), 257 (14), 241 (35), 239 (19), 223 (11), 221 (35), 200 (19), 199 (100), 197 (40), 183 (17), 181 (14), 175 (16), 163 (22), 149 (34), 139 (13), 136 (12), 135 (88), 117 (17), 93 (12), 91 (22), 79 (12). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$: 727.3609; found: 727.3610.
($6 S, 8 S$)-2,2,11,11-Tetramethyl-8-((2S,4S,5S)-4-methyl-5-(prop-2-yn-1-yl)tetrahydrofuran-2-yl)-3,3,10,10-tetraphenyl-4,9-dioxa-3,10-disiladodecan-6-ol (ent-47). Prepared analogously from ester
 ent-46 (803 mg, 1.04 mmol$)$ as a colorless syrup $(709 \mathrm{mg}, 97 \%)$.

3 Synthesis of the Sugar Fragment

Allyl $\boldsymbol{\alpha}$-L-rhamnopyranoside (51). L-Rhamnose (50) (4.0 g, 22 mmol) was dissolved in allyl alcohol $(30 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.4 \mathrm{~mL})$ was added. The mixture was stirred at $100{ }^{\circ} \mathrm{C}$
 for 1 h while its color changed to brown. After cooling to ambient temperature, solid $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg})$ was added and excess allyl alcohol was removed under reduced pressure. The residue was purified by flash chromatography (EtOAc) to yield the targeted compound as a highly viscous colorless oil ($3.5 \mathrm{~g}, 78 \%$) . $[\propto]_{D}^{20}=-83.0$ ($\mathrm{c}=1.29$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.85(\mathrm{dddd}, J=17.2,10.3,6.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dq}, J=$ $17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dq}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.39$ $-4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30-4.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.12(\mathrm{ddt}, J=13.0,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.75$ $(\mathrm{dd}, J=9.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=133.7,117.5,98.9,72.8,71.7,71.0,68.2,68.0,17.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3371,2977,2915,1450,1422,1383,1265,1128,1046,980,880,835,808,734,685$ $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=131(5), 100(46), 87(21), 85(11), 83(5), 74(7), 73(18), 72(5), 71(63), 61$ (13), 60 (96), 59 (11), 58 (46), 57 (26), 56 (6), 55 (10), 45 (18), 43 (41), 42 (15), 41 (100), 39 (21), 31 (18), 29 (25), 27 (11). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$: 227.0889; found: 227.0891.

Acetal 51a. 2,2-Dimethoxypropane ($4.4 \mathrm{~mL}, 35.3 \mathrm{mmol}$) was added dropwise to a stirred solution of
 rhamnoside $51(3.60 \mathrm{~g}, 17.6 \mathrm{mmol})$ and $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(60.6 \mathrm{mg}, 0.352 \mathrm{mmol})$ in DMF (17.6 mL) at ambient temperature. The reaction mixture was stirred for 16 h and used as a solution for the next step. An aliquot $(0.5 \mathrm{~mL})$ was removed from the reaction mixture and used to obtain an analytically pure sample. This aliquot was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by
flash chromatography (hexanes/EtOAc 3:1) to yield the desired compound as a colorless oil. $[\propto]_{D}^{20}=$ -27.1 ($\mathrm{c}=0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.74(\mathrm{dddd}, J=17.2,10.4,6.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.02$ $(\mathrm{ddt}, J=13.0,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{ddd}, J=9.5,6.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ $134.4,116.9,109.4,96.8,79.3,76.5,74.9,67.9,66.2,28.2,26.3,17.8 \mathrm{ppm}$. IR (film): $\tilde{v}=3461,2986$, 2936, 2922, 1454, 1382, 1372, 1243, 1219, 1171, 1139, 1106, 1072, 1050, 1021, 993, 919, 858, 818, $787,734,668 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=229(9), 187$ (8), 129 (6), 111 (5), 101 (18), 100 (100), 85 (40), 71 (31), 59 (31), 57 (10), 55 (13), 43 (29), 41 (34). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$: 267.1203; found: 267.1202.

Acetylated Acetal 52. Pyridine (20 mL) and acetyl chloride ($4.25 \mathrm{~mL}, 70.4 \mathrm{mmol}$) were added to the
 crude reaction mixture (see above) at $0^{\circ} \mathrm{C}$. The icebath was removed after 5 min and the reaction mixture was stirred at ambient temperature for further 24 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with aq. HCl $(1 \mathrm{~N}, 30 \mathrm{~mL})$, water $(30 \mathrm{~mL})$ and sat. NaHCO_{3} solution $(30 \mathrm{~mL})$. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $21: 1$ to $15: 1$ to $9: 1$) to give a colorless oil ($3.87 \mathrm{~g}, 73 \%$ over 2 steps). $[\propto]_{D}^{20}=-23.0$ $\left(\mathrm{c}=0.82, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.73(\mathrm{dddd}, J=17.2,10.4,5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ $(\mathrm{dd}, J=10.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{ddt}, J=13.1,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.67(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61$ $(\mathrm{s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=169.5$, $134.3,116.9,109.8,96.8,76.6,76.3,74.8,68.0,64.5,28.0,26.6,20.5,17.2 \mathrm{ppm}$. IR (film): $\tilde{v}=2985$, 2938, 2925, 1742, 1455, 1373, 1219, 1176, 1139, 1122, 1082, 1045, 1027, 999, 923, 888, 857, 840, 814, 785, $740 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=271(28), 229(15), 169$ (9), 151 (7), 142 (6), 129 (7), 113 (17), 112 (50), 111 (17), 101 (15), 100 (89), 85 (40), 83 (26), 82 (15), 71 (10), 59 (11), 43 (100), 41 (34). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}$: 309.1309; found: 309.1309.

Monoacetylated Diol 53. Compound $52(2.30 \mathrm{~g}, 7.63 \mathrm{mmol})$ was dissolved in $90 \% \mathrm{AcOH}(15 \mathrm{~mL})$
 and the resulting solution stirred at $110^{\circ} \mathrm{C}$ for 1 h . After cooling back to ambient temperature, the reaction mixture was concentrated and the residue was purified by flash chromatography (hexanes/EtOAc 1:1) to yield the desired diol as a white $\operatorname{solid}(1.83 \mathrm{~g}, 97 \%$ yield $) .[\propto]_{D}^{20}=-94.1\left(\mathrm{c}=1.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.88$ (dddd, $J=17.2,10.4,6.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{ddt}, J=13.0,5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddt}, J=$ $13.0,6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddt}, J=9.8$, $6.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.1$,
$133.6,117.5,98.4,75.6,71.0,70.3,68.1,65.6,21.0,17.4$ ppm. IR (film): $\tilde{v}=3327,2982,2940,2895$, $1735,1459,1426,1378,1295,1241,1133,1104,1070,1044,1002,982,923,834,793,700 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z(\%)=189(5), 142(5), 131(4), 129(5), 116(13), 101(25), 100(39), 83(4), 71(42), 60(26)$, 43 (100), 41 (38). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}$: 269.0996; found: 269.0997.

Bisacetylated alcohol 54. Diol $53(1.00 \mathrm{~g}, 4.06 \mathrm{mmol})$ and 2-aminoethyl diphenylborinate (91.4 mg ,
 $0.406 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$. Diispropylethylamine $(0.880 \mathrm{~mL}, 5.28 \mathrm{mmol})$ and acetylchloride $(0.319 \mathrm{~mL}, 5.28 \mathrm{mmol})$ were added dropwise at ambient temperature. The mixture was stirred for 3 hours and the reaction quenched by addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous phase was then extracted with EtOAc (3 x 15 mL), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture revealed a ratio of regioisomers of $10: 1$. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=3: 1\right)$ to give several pure fractions of the desired isomer (440 mg , 38%) along with mixed fractions ($700 \mathrm{mg}, 59 \% 5: 1$ ratio of regioisomers). $[\propto]_{D}^{20}=-83.0$ ($\mathrm{c}=1.51$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.66(\mathrm{dddd}, J=17.2,10.4,6.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=$ $10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{ddt}, J=13.1,6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=169.7,169.6,134.0,117.1,99.0,72.3,71.8,69.9,68.1,66.8,20.5,20.4,17.6 \mathrm{ppm} . \mathrm{IR}$ (film): $\tilde{v}=3466,2983,2937,1738,1427,1369,1316,1220,1176,1126,1100,1068,1036,984,937$, $922,832,801,699,601 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=231$ (3), 171 (2), 142 (14), 115 (11), 113 (11), 102 (15), 100 (31), 83 (12), 82 (14), 71 (17), 60 (4), 43 (100), 41 (21). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}$: 311.1101 ; found: 311.1099 .

Allyl 3,4-bis-O-acetyl-2-O-methyl- α-L-rhamnopyranoside (57). Alcohol 54 ($50.0 \mathrm{mg}, 0.173 \mathrm{mmol}$)

was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and the solution cooled to $0^{\circ} \mathrm{C}$. Aqueous $\mathrm{HBF}_{4}(48 \%, 45.0 \mu \mathrm{~L}, 0.347 \mathrm{mmol})$ was added via syringe, followed by trimethylsilyldiazomethane (1.51 M in hexane, $0.70 \mathrm{~mL}, 1.0 \mathrm{mmol}$). The resulting solution was stirred for 2 hours at $0^{\circ} \mathrm{C}$, when the addition of $\mathrm{HBF}_{4}(48 \%, 45.0 \mu \mathrm{~L}, 0.347 \mathrm{mmol})$ and trimethylsilyldiazomethane (1.51 m in hexane, $0.70 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was repeated. After 1 h , a third portion of both reagents was added and the reaction mixture stirred for one more hour. It was then carefully quenched by addition of sat. NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $5: 1$) to give the methylated compound as a colorless oil $(37.0 \mathrm{mg}, 71 \%) .[\propto]_{D}^{20}=-72.3\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86$ (dddd, $J=17.3,10.4,6.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{t}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{ddt}, J=12.9,5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddt}, J=12.9,6.1$,
$1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,169.8,133.5$, $117.5,96.4,78.4,71.6,71.5,68.1,66.4,59.5,20.9,20.7,17.4 \mathrm{ppm}$. IR (film): $\tilde{v}=2924,1740,1455$, 1370, 1239, 1219, 1107, 1074, 1036, 1000, 976, 915, 835, $798 \mathrm{~cm}^{-1} . \operatorname{MS}(E I) \mathrm{m} / \mathrm{z}(\%)=157$ (8), 156 (16), 129 (18), 125 (7), 116 (28), 115 (8), 114 (17), 113 (15), 103 (5), 96 (13), 87 (22), 85 (13), 83 (12), 74 (50), 45 (9), 43 (100), 41 (20). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}$: 325.1258; found: 325.1255.

3,4-Bis-O-acetyl-2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranose (58). SeO_{2} ($488 \mathrm{mg}, 4.40 \mathrm{mmol}$) was added to a
 solution of compound $57(1.20 \mathrm{~g}, 3.97 \mathrm{mmol})$ and acetic acid $(183 \mu \mathrm{~L}, 3.20 \mathrm{mmol})$ in 1,4-dioxane $(10 \mathrm{~mL})$ and the resulting suspension was stirred at reflux temperature for 2 h . After cooling to room temperature, the mixture was neutralized with triethylamine $(0.44 \mathrm{~mL})$ and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the desired hemiacetal as a white solid (0.891 g , $86 \%) .[\propto]_{D}^{20}=-42.3\left(\mathrm{c}=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data of the major anomer only): $\delta=5.26-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dq}, J=9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data of the major anomer only): $\delta=170.4,170.0,92.0,78.6,71.5$, $71.3,66.3,59.5,20.9,20.7,17.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3453,2923,2854,1741,1456,1373,1243,1225$, $1108,1074,1050,916,797 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=156$ (14), 129 (34), 116 (12), 115 (5), 114 (14), 113 (7), 87 (54), 85 (6), 83 (7), 74 (56), 45 (7), 43 (100), 29 (6). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Na}$: 285.0945; found: 285.0947 .

Trichloroacetimidate 59. $\mathrm{Cl}_{3} \mathrm{CCN}(0.934 \mathrm{~mL}, 9.31 \mathrm{mmol})$ was added dropwise to a suspension of
 hemiacetal 58 ($348 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(86.7 \mathrm{mg}, 0.039 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$. After stirring for 3 h at room temperature, the mixture was filtered and the filtrate was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc $4: 1$) to give the desired trichloroacetimidate as a white solid ($532 \mathrm{mg}, 98 \%$) . $[\propto]_{D}^{20}=-59.9\left(\mathrm{c}=1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62$ $(\mathrm{s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dq}, J=9.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.9,169.3,160.0,94.6,90.5,76.1,70.7,70.2,69.0,59.2,20.5,20.4,17.2$ ppm. IR (film): $\tilde{v}=3332,2988,2922,2851,1741,1673,1448,1368,1279,1236,1219,1156,1107$, $1056,1039,968,943,926,842,831,793,734 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / z(\%)=245(28), 184$ (19), 143 (14), 142 (24), 129 (16), 125 (28), 116 (18), 113 (13), 87 (22), 74 (34), 43 (100). HMRS (ESIpos): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{NCl}_{3} \mathrm{Na}$: 428.0041; found: 428.0042.

Bisacetal 55. Trimethylorthoacetate ($44.8 \mathrm{~mL}, 350 \mathrm{mmol}$) and 2,3-butadione ($7.7 \mathrm{~mL}, 88 \mathrm{mmol}$) were
 dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$ and the solution treated with $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(1.25 \mathrm{~g}, 6.57 \mathrm{mmol})$ before the mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, a solution of rhamnoside $51(3.02 \mathrm{~g}$, $14.8 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL}+7 \mathrm{~mL}$ rinse) was added and the mixture stirred at $75{ }^{\circ} \mathrm{C}$ overnight. After cooling to ambient temperature, $\mathrm{NEt}_{3}(1.2 \mathrm{~mL})$ was added to neutralize the medium prior to evaporation of the solvents under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc 4:1) to give the desired bisacetal as a highly viscous colorless syrup $(3.21 \mathrm{~g}, 72 \%) .[\propto]_{D}^{20}=-182.6\left(\mathrm{c}=0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86(\mathrm{dddd}, J=$ $16.8,10.3,6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddt}, J=12.9,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dq}, J=9.7,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.8,117.4,100.2,99.8,98.9$, $69.9,68.4,68.2,67.9,66.5,48.0,47.6,17.8,17.6,16.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3464,2932,2834,1454$, $1376,1138,1111,1076,1034,984,929,915,882,848,734,701,672 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=116$ (7), 113 (7), 101 (33), 85 (7), 84 (100), 83 (23), 75 (16), 73 (11), 57 (5), 55 (11), 43 (34), 41 (21), 29 (7). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{Na}$: 341.1571; found: 341.1571.

Methylated bisacetal 56. A solution of bisacetal $55(3.17 \mathrm{~g}, 10.4 \mathrm{mmol})$ in DMF (10 mL) was slowly added at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(748 \mathrm{mg}, 31.2 \mathrm{mmol})$ in DMF (60 mL).
 The resulting mixture was stirred for about 30 min at $0^{\circ} \mathrm{C}$ until gas evolution had ceased. MeI ($1.95 \mathrm{~mL}, 31.2 \mathrm{mmol}$) was then added dropwise, causing a color change to yellow. The mixture was warmed to room temperature overnight before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL). The aqueous phase was extracted with EtOAc (3 x 150 mL), the combined organic extracts were washed with brine $(200 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the methylated product as pale yellow oil ($2.21 \mathrm{~g}, 64 \%$). $[\propto]_{D}^{20}=-214.0$ $\left(\mathrm{c}=0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.91(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{dd}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dq}, J=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.9,117.3,99.8,99.5,97.1,78.8,68.7,68.4,67.9,66.9,59.2$, $47.9,47.6,17.8,17.8,16.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2932,2832,1453,1375,1197,1138,1114,1083,1037$, 994, 932, 882, 848, $815 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=116$ (9), 115 (11), 101 (25), 99 (11), 98 (100), 97 (17), 83 (16), 75 (5), 73 (16), 71 (5), 67 (9), 55 (7), 45 (10), 43 (30), 41 (29), 39 (6), 29 (7). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O} 7 \mathrm{Na}$: 355.1727; found: 355.1725 .

Allyl 2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranoside. Trifluoroacetic acid (19 mL) was added to an emulsion of
 compound 56a ($2.05 \mathrm{~g}, 6.17 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture turned slightly yellow and was allowed to stir for 7 min at this temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the diol as a pale orange oil that was used in the next step without further purification $(1.32 \mathrm{~g}, 98 \%, 95 \%$ purity). An analytically pure sample was obtained by flash chromatography (hexanes/EtOAc $=1: 1$ to $1: 2) .[\propto]_{D}^{20}=-46.3\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.84(\mathrm{dddd}, J=17.2,10.4,6.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dq}, J=$ $10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddt}, J=13.0,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{ddt}, J=13.0$, $6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75-3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.43(\mathrm{dd}$, $J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=133.7,117.2,95.4,80.4,73.5,71.4,67.9,67.8,58.8,17.5$ ppm. IR (film): $\tilde{v}=3416,2976,2932,2907,2832,1453,1382,1192,1133,1103,1075,1038,990$, $975,926,912,874,836,807 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=157$ (8), 156 (16), 129 (18), 125 (7), 116 (28), 115 (8), 114 (17), 113 (15), 103 (5), 96 (13), 87 (22), 85 (13), 83 (12), 74 (50), 45 (9), 43 (100), 41 (20).

Allyl 3,4-bis-O-acetyl-2-O-methyl- $\boldsymbol{\alpha}$-L-rhamnopyranoside (57). Triethylamine ($2.8 \mathrm{~mL}, 21 \mathrm{mmol}$)
 and acetic anhydride $(1.4 \mathrm{~mL}, 21 \mathrm{mmol})$ were successively added via syringe at $0{ }^{\circ} \mathrm{C}$ to a solution of DMAP ($152 \mathrm{mg}, 1.2 \mathrm{mmol}$) and the crude diol $56 \mathbf{a}$ described above ($1.4 \mathrm{~g}, 6.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The ice bath was removed and stirring continued for 2 h at ambient temperature, before sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc ($3 \times 7 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the desired bisacetate as a white crystalline solid ($1.28 \mathrm{~g}, 68 \%$). The physical and spectroscopic data were identical with those of the sample obtained by the alternative route outlined above.

4 Fragment Assembly, Completion of the Synthesis and Structure Reassignment

Diyne 60. A flame-dried Schlenk tube was charged with a solution of alcohol 47 (224 mg ,
 $0.318 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ and a solution of acid $\mathbf{1 8}(142 \mathrm{mg}$, $0.350 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. DMAP ($194 \mathrm{mg}, 1.59 \mathrm{mmol}$) and DCC ($138 \mathrm{mg}, 0.668 \mathrm{mmol}$) were introduced as solids and the resulting mixture was stirred at ambient temperature for 18 h . The white precipitate was filtered off through a short pad of Celite ${ }^{\circledR}$ that was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were concentrated and the residue purified by flash chromatography (hexanes/EtOAc $24: 1$) to
give the diyne $\mathbf{6 0}$ as a mixture of α, β - and β, γ-olefins ($1.5: 1,222 \mathrm{mg}, 64 \%$) as a white foam, along with recovered alcohol 47 ($63.1 \mathrm{mg}, 28 \%$) as a colorless oil.

A solution of DBU (0.5 m in $\mathrm{MeCN}, 102 \mu \mathrm{~L}, 0.051 \mathrm{mmol}$) was added to a solution of the just mentioned mixture of isomeric diynes ($222 \mathrm{mg}, 0.203 \mathrm{mmol}$) in $\mathrm{MeCN}(25 \mathrm{~mL}$) and the resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 70 h . After cooling to ambient temperature, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(30 \mathrm{~mL})$ containing 10 drops of 1 m HCl was added, the aqueous phase was extracted with EtOAc (4 x 30 mL), and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $24: 1$) to yield the desired α, β-olefin as a white foam ($202 \mathrm{mg}, 91 \%$). $[\alpha]_{D}^{20}=-10.5\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.57$ (m, 8H), $7.47-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{dt}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dt, $J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (ddd, $J=15.9,2.0,0.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=$ $7.9,6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33$ (ddd, $J=11.4,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=11.6,6.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.19(\mathrm{~m}, 4 \mathrm{H})$, $2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73$ (dd, $J=11.7,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.8,7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.07(\mathrm{~m}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 3 H), 0.03 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,148.4,144.7,136.0,136.0,135.9$, 135.6, 135.6, 134.6, 134.0, 133.5, 133.4, 129.6, 129.3, 129.1, 127.6, 127.6, 127.3, 127.1, 123.4, 108.3, 84.4, 81.7, 80.9, 79.3, 78.3, 74.1, 73.2, 72.3, 69.2, 68.6, 65.2, 42.3, 41.4, 41.3, 38.8, 35.1, 35.0, 34.6, $33.3,27.2,26.8,25.8,20.7,19.8,19.6,19.2,18.1,3.2,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2930$, $2856,1720,1656,1472,1462,1427,1376,1361,1257,1175,1111,1071,1006,836,823,776,740$, $701 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1115.7(100(M+N a)$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1115.6043; found: 1115.6049.

Diyne 11-epi-60. Prepared analogously from acid 11 -epi-18 ($34.9 \mathrm{mg}, 85.8 \mu \mathrm{~mol}$) and alcohol 47
 $(55 \mathrm{mg}, 78.0 \mu \mathrm{~mol})$ as a white foam ($1^{\text {st }}$ step: $216 \mathrm{mg}, 71 \%$ yield, $2^{\text {nd }}$ step: $56 \mathrm{mg}, 92 \%) .[\propto]_{D}^{20}=+32.5\left(\mathrm{c}=0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 12 \mathrm{H})$, $6.86(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=15.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dt, $J=15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=15.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{ddd}, J=7.8,6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 3 \mathrm{H})$, 3.64 (dd, $J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-$ $3.28(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96$ $-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{ddd}, J=$ $14.0,9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5$, $148.0,144.7,136.0,135.9,135.9,135.6,135.5,134.6,133.9,133.5,133.4,129.6,129.3,129.1,127.6$,
$127.6,127.3,127.1,123.3,109.2,84.3,81.6,81.0,79.3,78.4,74.0,73.3,72.3,71.4,69.2,68.6,65.2$, $42.9,41.9,41.3,38.8,35.1,35.0,34.7,33.9,27.2,26.8,25.8,21.0,20.7,19.5,19.2,18.1,14.8,4.2$, $-4.5,-4.5 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=2956,2930,2856,1721,1472,1462,1428,1361,1258,1112,1075$, 1006, 836, 776, 740, 702, $612 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1115.7(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1115.6043; found:1115.6053.

Diyne 66. Prepared analogously from acid $18(170 \mathrm{mg}, 0,418 \mathrm{mmol})$ and alcohol ent-47 (268 mg ,
 0.380 mmol) as a white foam ($1^{\text {st }}$ step: $216 \mathrm{mg}, 52 \%$ yield, $2^{\text {nd }}$ step: $183 \mathrm{mg}, 85 \%) .[\propto]_{D}^{20}=-9.0\left(\mathrm{c}=1.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.67-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{dt}, J=$ $15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=15.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{ddd}, J=15.9,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dtd}, J=7.9$, $4.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{dd}, J=10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{dd}, J=10.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=11.0,5.5,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.27 (ddd, $J=11.4,5.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 5 \mathrm{H})$, $1.84(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.17$ $-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6,148.4,144.7,136.0$, $135.9,135.6,135.5,135.5,134.5,133.8,133.4,133.4,129.6,129.3,129.1,127.7,127.6,127.6,127.6$, $127.3,127.1,123.4,108.2,84.4,81.6,80.9,79.3,78.3,74.1,73.2,72.2,71.3,69.2,68.6,65.2,42.3$, $41.3,41.3,38.8,35.1,34.9,34.5,33.3,27.2,26.7,25.8,20.7,19.8,19.5,19.2,18.1,14.8,4.2,-4.5$, $-4.5 \mathrm{ppm} . \mathrm{IR}$ (film): $\tilde{v}=2955,2930,2856,1720,1472,1462,1428,1377,1257,1176,1110,1070$, 1006, 836, 776, 739, 702, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1115.8(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1115.6043 ; found:1115.6052.

Diyne (11-epi-66). Prepared analogously from acid 11-epi-18 (89 mg, 0.219 mmol) and alcohol ent-47
 $(140 \mathrm{mg}, 0.199 \mathrm{mmol})$ as a white foam ($1^{\text {st }}$ step: $116 \mathrm{mg}, 53 \%$ yield, $2^{\text {nd }}$ step: $\left.108 \mathrm{mg}, 93 \%\right) .[\propto]_{D}^{20}=+40.9\left(\mathrm{c}=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 12 \mathrm{H})$, $6.85(\mathrm{dt}, J=15.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=15.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dt, $J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=15.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dtd}, J$ $=9.0,4.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.62$ (dd, $J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dtd, J $=11.8,5.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{ddd}, J=6.3,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{dt}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.89(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{ddd}, J=13.9,9.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=165.6,148.1,144.8,136.0,135.9,135.6,135.5,134.5,133.8,133.4,133.4,129.7,129.6$, 129.3, 129.1, 127.6, 127.6, 127.4, 127.1, 123.3, 109.1, 84.3, 81.6, 80.9, 79.3, 78.4, 73.9, 73.3, 72.2, $71.3,69.2,68.5,65.2,42.9,41.9,41.3,38.8,35.1,34.9,34.6,33.9,27.2,27.1,26.7,26.7,25.8,21.0$, 20.6, 19.5, 19.2, 18.1, 14.8, 4.2, -4.5, -4.5 ppm. IR (film): $\tilde{v}=2955,2930,2857,1721,1472,1462$, 1428, 1361, 1257, 1155, 1112, 1071, 1006, 836, 776, 702, $610 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1115.6$ ($100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{67} \mathrm{H}_{92} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1115.6043; found:1115.6047.

Macrocyclic Enyne 62. A flame-dried Schlenk tube was charged with powdered $4 \AA$ molecular sieves
 $(\sim 1.2 \mathrm{~g})$ and $5 \AA$ molecular sieves ($\sim 1.5 \mathrm{~g}$). The flask was then evacuated and the molecular sieves were flame-dried. After reaching ambient temperature, a solution of diyne $\mathbf{6 0}$ ($191 \mathrm{mg}, 0.175 \mathrm{mmol}$) in toluene $(85 \mathrm{~mL})$ was added and the resulting suspension was stirred for 45 min . In a separate flame-dried Schlenk tube, a solution of the molybdenum alkylidyne complex $61(18.2 \mathrm{mg}, 17.5 \mu \mathrm{~mol})$ in toluene (2 mL) was prepared. This solution was added dropwise to the flask containing the diyne via syringe and the resulting mixture was stirred at ambient temperature for 3 h . The mixture was filtered through a short pad of Celite ${ }^{\circledR}$ that was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined filtrates were evaporated and the brown residue was purified by flash chromatography (hexanes/EtOAc 29:1 to $24: 1$ to 19:1) to yield the target macrocycle as a white foam ($133 \mathrm{mg}, 72 \%$). $[\propto]_{D}^{20}=-7.4\left(\mathrm{c}=0.87, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.45-7.24(\mathrm{~m}$, $12 \mathrm{H}), 6.87$ (ddd, $J=15.7,8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=16.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dt, $J=15.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32(\mathrm{dq}, J=15.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, J=9.6,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-$ $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.27 (dddd, $J=11.2,9.2,2.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{tdd}, J=9.1,4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26-2.12(\mathrm{~m}, 5 \mathrm{H}), 2.10(\mathrm{ddd}, J=14.2,9.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.8,148.5,144.9$, $135.9,135.8,135.6,135.2,135.0,134.9,133.9,133.6,133.0,129.5,129.3,129.2,127.9,127.6,127.6$, $127.4,127.2,123.6,107.8,86.8,81.3,81.2,78.5,75.6,74.5,71.9,71.7,68.6,65.5,43.2,42.2,41.8$, $38.4,36.5,35.1,34.0,33.8,29.7,27.2,26.8,25.8,21.6,19.6,19.3,18.1,13.8,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=$ 2955, 2929, 2856, 1718, 1472, 1462, 1428, 1361, 1328, 1256, 1174, 1112, 1071, 986, 836, 823, 775, 737, $700 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1075.7(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1075.5730; found: 1075.5725.

Macrocyclic Enyne 11-epi-62. Prepared analogously (at room temperature) from diyne 11-epi-60
 $(52 \mathrm{mg}, 47.5 \mu \mathrm{~mol})$ as a white foam $(32 \mathrm{mg}, 64 \%) .[\propto]_{D}^{20}=+54.6(\mathrm{c}=$ $1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69(\mathrm{ddd}, J=7.7,3.3$, $1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.97(\mathrm{ddd}, J=$ $15.4,8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=15.7$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=15.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.16$ $(\mathrm{ddd}, J=8.8,6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=8.2,5.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-$ $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=12.9,7.9,1 \mathrm{H}), 2.07$ (ddd, $J=16.9,5.7,0.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.5,7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.51$ $(\mathrm{m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~m}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.3,146.2,146.0$, $135.9,135.9,135.6,134.8,134.6,133.6,133.6,129.5,129.2,129.1,127.6,127.5,127.3,127.2,123.3$, $110.4,86.6,81.6,81.0,78.8,75.5,74.1,72.9,72.9,68.7,65.8,42.6,42.2,41.9,38.6,36.6,35.8,35.3$, $33.8,27.3,26.8,25.8,23.1,21.3,19.7,19.3,18.1,13.7,-4.5,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2930$, $2857,1722,1472,1462,1428,1361,1327,1257,1176,1112,1067,854,836,823,776,739,701,608$ cm^{-1}. MS (ESIpos) $m / z(\%)=1075.6\left(100(\mathrm{M}+\mathrm{Na})\right.$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1075.5730; found:1075.5722.

Macrocyclic Enyne 67. A slightly modified procedure had to be used: A flame-dried Schlenk tube
 was charged with powdered $4 \AA$ molecular sieves $(\sim 0.7 \mathrm{~g})$ and $5 \AA$ molecular sieves ($\sim 0.9 \mathrm{~g}$). The flask was then evacuated and the molecular sieves were flame-dried. After reaching ambient temperature, a solution of diyne $66(90 \mathrm{mg}, 82.3 \mu \mathrm{~mol})$ in toluene (40 mL) was added and the resulting suspension was stirred for 45 min . The solution was then placed in a pre-heated oilbath $\left(85^{\circ} \mathrm{C}\right)$. In a separate flame-dried Schlenk tube, a solution of the molybdenum alkylidyne complex $\mathbf{6 1}(8.6 \mathrm{mg}, 8.2 \mu \mathrm{~mol})$ in toluene (2 mL) was prepared. This solution was added dropwise to the flask containing the diyne via syringe at $85^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 2 h . After cooling to room temperature, the mixture was filtered through a short pad of Celite ${ }^{\circledR}$ that was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined filtrates were evaporated and the brown residue was purified by flash chromatography (hexanes/EtOAc 29:1 to 24:1 to 19:1) to yield the targeted macrocycle as a white foam ($64 \mathrm{mg}, 74 \%$). $[\alpha]_{D}^{20}=+8.5\left(\mathrm{c}=1.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.25$ $(\mathrm{m}, 12 \mathrm{H}), 6.82$ (ddd, $J=15.9,5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=15.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=9.9,5.4,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86 (ddd, $J=8.0,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=11.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.07(\mathrm{~m}$,
$7 \mathrm{H}), 1.86-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.8,8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (ddd, J $=13.9,6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{dq}, J=11.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.00$ $(\mathrm{s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,147.8,145.0,135.9,135.8,135.6,134.9,134.7,133.7,133.6$, $133.4,129.6,129.5,129.2,129.2$, 127.9, 127.7, 127.6, 127.4, 127.2, 122.3, 108.8, 86.2, 81.2, 80.5, $78.6,74.2,73.2,71.4,71.2,68.7,65.3,42.7,41.9,41.4,37.3,36.4,34.5,33.4,33.3,27.2,27.1,26.8$, $25.8,23.2,21.5,19.5,19.3,18.1,13.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2930,2856,1720,1472,1462$, 1428, 1361, 1331, 1257, 1178, 1111, 1070, 937, 837, 823, 776, 739, 702, $610 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z $(\%)=1075.7\left(100(\mathrm{M}+\mathrm{Na})\right.$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1075.5730; found: 1075.5736.

Macrocyclic Enyne 11-epi-67. Prepared analogously (at room temperature) from diyne 11-epi-66
 $(107 \mathrm{mg}, 97.8 \mu \mathrm{~mol})$ as a white foam $(85.1 \mathrm{mg}, 83 \%) .[\propto]_{D}^{20}=+57.4(\mathrm{c}=$ $0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.42$ $-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{dt}, J=15.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{dd}, J=15.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=15.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.73(\mathrm{~m}, 5 \mathrm{H}), 3.44$ $(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.29-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{ddd}, J=$ $14.0,11.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0$, $146.2,145.7,136.0,135.8,135.5,135.5,135.1,134.0,133.5,133.4,129.6,129.5,129.0,128.9,127.6$, $127.3,127.0,121.6,110.1,87.1,82.4,81.7,78.2,73.5,72.8,72.2,72.0,68.6,65.1,43.0,42.1,37.8$, $36.9,33.9,33.6,33.2,27.2,26.8,26.8,25.9,25.8,23.0,21.4,19.5,19.3,18.1,13.2,-4.5,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2929,2856,1720,1472,1462,1378,1361,1291,1256,1176,1111,1075,1006$, 837, 776, 739, 702, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1075.8(100(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: m / z$: 1075.5730 ; found:1075.5724.

Macrocyclic Diene 62a. In order to obtain reproducible results, all solvents used for the preparation
 of the activated $\mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})$ and the reaction were degassed by bubbling Ar through the solvent for at least 20 min .
A Young tube was evacuated, backfilled with Argon and charged with a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,1.8 \mathrm{~mL})$. Freshly prepared $\mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})^{[12]}$ $(1.6 \mathrm{~g})$ was added, followed by a solution of enyne 62 (130 mg , 0.123 mmol) in THF ($0.5 \mathrm{~mL}+2 \times 0.2 \mathrm{~mL}$ rinse). The Young tube was sealed and placed in a preheated $\left(45^{\circ} \mathrm{C}\right)$ oil bath. The suspension was vigorously stirred at this temperature for 70 h before it was allowed to reach ambient temperature. The
mixture was filtered through a short pad of Celite ${ }^{\circledR}$ that was rinsed with EtOAc/EtOH $(9: 1,75 \mathrm{~mL})$. The combined filtrates were concentrated to $\approx 1 / 10$ of the original volume before brine (10 mL) was added. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 29:1 to $24: 1$ to $19: 1$) to give the desired diene as a white foam ($115 \mathrm{mg}, 89 \%$). $[\propto]_{D}^{20}$ $=-47.9\left(\mathrm{c}=0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64-7.54(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.22(\mathrm{~m}$, $12 \mathrm{H}), 6.84(\mathrm{ddd}, J=15.7,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=15.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{ddd}, J=8.8$, $6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.56(\mathrm{dt}, J=7.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.20$ $(\mathrm{ddd}, J=16.0,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{dt}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{ddd}, J=12.7,7.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}$, $2 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8,145.0,140.2,136.0,136.0$, $135.6,135.6,134.7,133.9,133.5,133.5,129.6,129.5,129.4,127.6,127.6,127.4,127.2,126.4,124.3$, $123.3,81.4,80.1,74.2,73.4,72.0,71.6,68.7,65.4,43.1,41.9,41.9,38.5,35.4,34.4,34.3,32.1,30.0$, $27.2,26.8,25.8,20.7,19.5,19.3,18.1,15.4,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2930,2857,1721,1654$, 1472, 1462, 1428, 1375, 1257, 1175, 1112, 1073, 1006, 836, 823, 775, 739, $702 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=1077.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1077.5887; found: 1075.5884.

Macrocyclic Diene 11-epi-62a. Prepared analogously from enyne 11-epi-62 (31.0 mg, $29.4 \mu \mathrm{~mol}$) as
 a white foam ($26.8 \mathrm{mg}, 86 \%$). $[\propto]_{D}^{20}=+15.2\left(\mathrm{c}=1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.09$ (ddd, $J=15.1,10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=14.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ $(\mathrm{tt}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=$ $14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{tdd}, J=9.6,4.6,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{dt}, J=15.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dt}, J=14.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.72$ (m, 2H), $1.66(\mathrm{dd}, J=12.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=14.0,10.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H})$, $1.25-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,145.7,139.8$, $135.9,135.8,135.7,135.6,134.1,133.9,133.7,133.4,129.6,129.5,127.6,127.5,127.5,127.4,125.9$, $125.6,122.8,81.3,80.7,75.1,73.0,72.3,72.0,68.5,65.1,43.5,42.3,42.1,39.3,35.6,34.6,34.6$, $33.9,29.4,27.1,26.7,25.8,22.1,19.4,19.2,18.1,15.1,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2957,2928$,
$2856,1724,1427,1257,1157,1113,1076,833,822,778,741,703,557 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=$ $1077.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1077.5887; found: 1077.5884.

Macrocyclic Diene 72. Prepared analogously from enyne $67(26.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ as a white foam
 $(24.1 \mathrm{mg}, 91 \%) .[\propto]_{D}^{20}=+13.2\left(\mathrm{c}=1.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.67-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.88(\mathrm{ddd}, J=$ $15.7,7.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{ddd}, J=8.6,5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.66$ $(\mathrm{m}, 2 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.32$ $(\mathrm{m}, 1 \mathrm{H}), 3.31-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dt}, J=13.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dt}, J=14.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ $(\mathrm{ddd}, J=14.5,8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{dt}, J=12.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.25(\mathrm{~m}$, $2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 18 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,145.2,140.1,136.0,135.9,135.6,135.6$, $134.7,134.0,133.5,133.4,129.9,129.5,129.3,127.6,127.3,127.3,126.8,124.3,123.3,81.2,80.1$, $73.8,73.2,72.7,71.6,68.8,65.5,43.0,41.9,41.8,38.5,35.7,34.4,34.1,33.3,30.2,27.2,26.7,25.8$, 20.2, 19.5, 19.2, 18.1, 15.2, -4.5 ppm. IR (film): $\tilde{v}=2956,2929,2857,1722,1428,1293,1258,1177$, 1107, 741, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1077.7(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}$: 1077.5887 ; found: 1077.5896 .

Macrocyclic Diene 11-epi-72. Prepared analogously from enyne 11-epi-67 (71.0 mg, $67.4 \mu \mathrm{~mol}$) as a
 white foam ($59.2 \mathrm{mg}, 83 \%$). $[\propto]_{D}^{20}=+79.1\left(\mathrm{c}=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.84$ (ddd, $J=15.8,7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{t}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=15.1$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{td}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.10$ (ddd, $J=8.8,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{td}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.61$ (m, 4H), 3.28 (ddt, $J=10.9,9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.16(\mathrm{~m}, 5 \mathrm{H}), 2.09(\mathrm{dtd}, J=14.7,5.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dt}, J=13.0$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.03$ $(\mathrm{s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7$, 145.0, 141.2, 135.9, 135.9, 135.6, 135.5, 134.3, $133.6,133.4,133.3,130.0,129.6,129.5,129.4,129.4,127.6,127.6,127.5,127.4,126.8,125.5,122.9$, 81.3, 79.7, 73.8, 73.2, 72.4, 70.8, 68.5, 65.4, 44.2, 42.4, 42.3, 39.0, 35.7, 33.3, 33.3, 33.1, 30.8, 27.1, $26.7,25.8,22.9,19.4,19.2,18.1,15.3,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2931,2857,1718,1472,1462$,

1428, 1257, 1177, 1155, 1112, 1076, 1005, 836, 776, 737, $702 \mathrm{~cm}^{-1} . \operatorname{MS}($ ESIpos $) m / z(\%)=1077.7$ (100 (M+Na)). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{64} \mathrm{H}_{90} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}: 1077.5887$; found: 1077.5878.

Alcohol 63. $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6.2 \mathrm{mg}, 32.6 \mu \mathrm{~mol})$ was added to a solution of silyl ether $\mathbf{6 2 a}(114 \mathrm{mg}$,
 $0.109 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1,12 \mathrm{~mL})$ and the mixture was stirred for 5 h . The reaction was quenched by addition of sat. NaHCO_{3} solution $(12 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc 2:1) to yield the desired alcohol as a white foam ($92 \mathrm{mg}, 90 \%$). $[\propto]_{D}^{20}=-42.5$ (c $=0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.58(\mathrm{~m}, 8 \mathrm{H})$, $7.43-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{ddd}, J=15.8,7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{ddt}, J=15.6,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ $(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.12(\mathrm{~m}$, $2 \mathrm{H}), 4.03(\mathrm{ddd}, J=8.8,6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.21(\mathrm{~m}$, $2 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{tdd}, J=7.5,3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03$ (ddd, $J=14.5$, $10.1,0.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.76(\mathrm{ddd}, J=14.0,8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.38 (ddd, $J=12.8,7.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=13.5,8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{ddd}, J=11.5,10.9$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{ddd}, J=11.6,11.3,1.09 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,143.7,140.0,136.0$, $136.0,135.6,135.6,134.6,133.9,133.5,130.0,129.6,129.6,129.4,129.2,127.6,127.6,127.4,127.2$, $126.4,124.4,123.3,81.4,80.1,74.2,73.4,72.1,71.6,68.1,65.4,42.9,41.4,41.3,38.4,35.4,34.5$, $34.3,32.1,30.0,27.2,26.8,20.9,19.5,15.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3454,2957,2930,2857,1720,1654$, 1472, 1427, 1361, 1265, 1176, 1112, 1006, 822, 739, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=963.6(100$ $(\mathrm{M}+\mathrm{Na})$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5028.

Alcohol 11-epi-63. Prepared analogously from silyl ether 11-epi-62a ($24.2 \mathrm{mg}, 22.9 \mu \mathrm{~mol}$) as a white
 foam ($19.3 \mathrm{mg}, 89 \%$). $[\propto]_{D}^{20}=+28.4\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.07$ (ddd, $J=15.1,10.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=14.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ $(\mathrm{tt}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=15.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=$ $14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.68$ $(\mathrm{m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{tt}, J=9.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{tdd}, J=9.6,4.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{dd}, J=8.0,7.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{ddd}, J=13.6,7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $165.2,145.4,139.6,135.9,135.8,135.7,135.6,134.1,133.9,133.6,133.5,129.6,129.5,127.6,127.5$,
$127.5,127.4,126.0,125.7,122.9,81.3,80.8,75.0,73.1,72.4,72.1,68.0,65.2,43.4,41.7,41.6,39.2$, $35.6,34.6,34.6,34.0,29.5,27.1,26.7,20.1,19.4,19.2,15.1 \mathrm{ppm}$. IR (film): $\tilde{v}=3414,2957,2930$, 2857, 1722, 1655, 1472, 1428, 1361, 1326, 1262, 1177, 1111, 990, 822, 739, 702, $610 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=963.6\left(100(\mathrm{M}+\mathrm{Na})\right.$). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5017.

Secondary alcohol 72a. Prepared analogously from silyl ether $72(24.1 \mathrm{mg}, 22.8 \mu \mathrm{~mol})$ as a white
 foam $(18.4 \mathrm{mg}, 86 \%) .[\propto]_{D}^{20}=+13.8\left(\mathrm{c}=0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.23(\mathrm{~m}, 12 \mathrm{H}), 6.87$ (ddd, $J=15.7,7.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.1$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{ddd}, J=8.8,5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 (ddt, $J=10.7,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=7.7,7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=10.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H})$, 3.30 (dddd, $J=10.6,8.9,3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{dt}, J=$ $13.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.5,9.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=13.9,8.6$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.47(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}$, $9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6$, $144.9,140.0,136.0,135.9,135.6,135.6,134.6,134.0,133.4,129.9,129.5,129.4,127.6,127.3,127.3$, $126.8,124.3,123.4,81.2,80.0,73.7,73.2,72.5,71.6,68.1,65.4,43.0,41.3,41.3,38.4,35.6,34.3$, $34.0,33.1,30.2,27.2,26.7,20.2,19.5,19.2,15.2 \mathrm{ppm}$. IR (film): $\tilde{v}=3422,2957,2931,2857,1719$, $1656,1472,1428,1362,1265,1177,1111,982,823,740,702,611 \mathrm{~cm}^{-1} . \operatorname{MS}(E S I p o s) \mathrm{m} / \mathrm{z}(\%)=$ 963.6 (100 (M+Na)). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5021.

Alcohol 11-epi-72a. Prepared analogously from silyl ether 11-epi-72 (23.1 mg, $21.9 \mu \mathrm{~mol})$ as a white
 foam ($18.5 \mathrm{mg}, 90 \%) .[\propto]_{D}^{20}=+100.5\left(\mathrm{c}=0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.55(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 12 \mathrm{H}), 6.82$ (ddd, $J=15.8,7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=15.1$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{td}, J=10.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.10$ $(\mathrm{ddd}, J=8.9,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{td}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.70$ $(\mathrm{m}, 2 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{ddt}, J=11.3,9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dddd}, J=16.4,9.5,5.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.16(\mathrm{~m}, 4 \mathrm{H})$, $2.08(\mathrm{dt}, J=14.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.25-$ $1.12(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,144.7,141.0,135.9,135.9,135.5,135.5,134.2,133.5,133.4$, $133.3,130.0,129.6,129.5,129.4,129.4,127.6,127.5,127.4,126.9,125.6,123.0,81.3,79.6,73.6$,
$73.2,72.3,70.6,67.9,65.4,44.2,41.8,41.7,38.9,35.6,33.3,33.2,33.0,30.8,27.1,26.7,22.9,19.4$, 19.2, 15.4 ppm. IR (film): $\tilde{v}=3456,2957,2931,2857,1714,1472,1462,1428,1362,1268,1180$, 1110, 1089, 1048, 999, 908, 822, 731, 701, $610 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=963.6(100(\mathrm{M}+\mathrm{Na})$). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 963.5022; found: 963.5024.

Glycoside 64. A Schlenk tube was charged with powdered $4 \AA \mathrm{MS}(400 \mathrm{mg})$ and flame-dried in
 vacuo. After reaching RT, the molecular sieves were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and a solution of alcohol $\mathbf{6 3}(87.0 \mathrm{mg}, 92.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.6 mL) was introduced. Rhamnosyl donor 59 (56.3 mg , $139 \mu \mathrm{~mol}$) was added as a solid and the resulting suspension was stirred for 45 min at ambient temperature before it was cooled to $-50{ }^{\circ} \mathrm{C}$. A solution of TESOTf $(0.1 \mathrm{M}, 277 \mu \mathrm{~L}, 27.7 \mu \mathrm{~mol})$ was added dropwise via syringe over 1 min . After stirring for 30 min at $-50^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{NEt}_{3}(0.1 \mathrm{~mL})$, the mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was evaporated. The crude residue was purified by flash chromatography (hexanes/EtOAc 3:1) to yield the desired glycoside as a white foam ($97.0 \mathrm{mg}, 88 \%$ yield, $16: 1$ d.r.). $[\propto]_{D}^{20}=-61.5\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.70-7.55(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{ddd}, J=15.8,8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}$, $J=15.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=15.4$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.14(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=8.8$, $6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dq}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=10.7,4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.60(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=15.3,8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.1,8.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=12.7,7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=170.3,169.9,165.7,144.5,140.0,136.0,136.0,135.6,135.6,135.6$, $134.6,133.9,133.5,130.0,129.6,129.6,129.4,129.2$, 127.6, 127.6, 127.4, 127.2, 126.5, 124.4, 123.5, $95.4,81.4,80.1,78.8,74.1,73.4,73.2,72.1,71.7,71.6,71.6,66.7,65.4,59.6,43.0,39.1,38.5,37.6$, $35.4,34.5,34.3,32.1,29.9,29.7,27.2,26.8,21.0,20.8,19.5,19.3,17.5,15.3 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=$ 2958, 2929, 2857, 1745, 1720, 1654, 1472, 1361, 1427, 1365, 1241, 1223, 1177, 1107, 1074, 1040, 998, 822, 803, 755, $702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=1207.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 107.5976.

Glycoside 11-epi-64. Prepared analogously from 11-epi-63 (24.2 $\mathrm{mg}, 22.9 \mu \mathrm{~mol}$) as a white foam
 ($20.6 \mathrm{mg}, 87 \%$ yield, single diastereomer). $[\propto]_{D}^{20}=-17.4$ ($\mathrm{c}=0.87$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.52(\mathrm{~m}, 8 \mathrm{H}), 7.43-$ $7.24(\mathrm{~m}, 11 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=15.2,10.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{dd}, J=14.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dd, $J=15.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=15.0 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dd, $J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.00(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dq}, J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.66(\mathrm{~m}$, $2 \mathrm{H}), 3.52(\mathrm{dd}, J=3.18,1.98 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=11.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.69$ - $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dddd, $J=14.1,9.3,4.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{q}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}$, $9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=170.3,169.9,165.2,145.3,139.5,135.9,135.8,135.6,135.6,134.1,133.9,133.6,133.4$, $129.6,129.5,129.5,127.6,127.5,127.5,127.4,126.0,125.7,123.0,95.4,81.3,80.8,78.8,75.0,73.1$, $73.1,72.4,72.1,71.6,71.6,66.6,65.1,59.6,43.4,39.3,39.3,37.9,35.6,34.6,33.9,29.4,27.0,26.7$, $22.0,21.0,20.8,19.4,19.2,17.4,15.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2956,2930,2857,1725,1428,1365,1327$, 1243, 1223, 1178, 1110, 1042, 912, 824, 736, 703, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1207.6(100$ (M+Na)). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 1207.5966.

Glycoside 72b. Prepared analogously from 72a ($18.4 \mathrm{mg}, 19.5 \mu \mathrm{~mol}$) as a white foam $(20.5 \mathrm{mg}, 94 \%$
 purity, 83% yield, single diastereomer). $[\propto]_{D}^{20}=-10.2(\mathrm{c}=0.97$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68-7.54(\mathrm{~m}, 8 \mathrm{H}), 7.43-$ $7.21(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{dt}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{dd}, J=15.1 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.13(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{t}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=8.4,5.3,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.65-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.25$ (m, 2H), $2.46-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{dd}, J=7.2$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.5,9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=13.9,8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.15$ $(\mathrm{m}, 5 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 18 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,169.9,165.6,144.8,140.0,136.0,135.9,135.6,135.5$, $134.6,134.0,133.5,133.4,129.8,129.5,129.4,127.6,127.3,126.9,124.3,123.5,95.3,81.2,80.0$, $78.8,73.6,73.3,73.2,72.6,71.7,71.6,71.5,66.6,65.4,59.6,42.9,39.1,38.5,37.4,35.6,34.4,34.1$, $33.2,30.2,27.1,26.7,21.0,20.8,20.2,19.5,19.2,17.4,15.2 \mathrm{ppm} . \operatorname{IR}(f i l m): \tilde{v}=2957,2930,2857$,
$1725,1472,1461,1428,1365,1242,1224,1110,1043,999,913,823,736,703,611 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=1207.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 1207.5963.

Glycoside 11-epi-72b. Prepared analogously from 11-epi-72a ($18.6 \mathrm{mg}, 19.8 \mu \mathrm{~mol}$) as a white foam
 (19.9 mg, 94% purity, 80% yield, single diastereomer). $[\propto]_{D}^{20}=+41.2$ $\left(\mathrm{c}=0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65-7.56(\mathrm{~m}$, $8 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{ddd}, J=15.7,7.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ $(\mathrm{dd}, J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=$ $15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=15.2 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.19(\mathrm{~m}$, $1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-$ $4.93(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=8.8,4.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{dd}, J=3.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H})$, 2.41 (dddd, $J=16.5,9.5,5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.90(\mathrm{dt}, J=13.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.5,8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=170.4,169.9,165.7,144.5,141.0,135.9,135.9,135.5,135.5,134.2$, $133.5,133.4,133.3,130.0,129.6,129.5,129.4,127.6,127.5,127.4,126.9,125.6,123.0,95.4,81.3$, $79.6,78.8,73.6,73.3,73.2,72.4,71.6,70.7,66.6,65.4,59.6,44.2,39.7,39.0,37.9,35.6,33.3,33.2$, $33.0,30.8,27.1,26.7,22.9,21.0,20.8,19.4,19.2,17.4,15.4 \mathrm{ppm}$. IR (film): $\tilde{v}=2955,2929,2857$, 1722, 1461, 1428, 1356, 1330, 1242, 1223, 1179, 1110, 1076, 1041, 999, 823, 739, 703, $611 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=1207.7(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{69} \mathrm{H}_{92} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na}$: 1207.5969; found: 1207.5967.

Diol 64a. Dry $\mathrm{K}_{2} \mathrm{CO}_{3}(28.3 \mathrm{mg}, 205 \mu \mathrm{~mol})$ was added to a solution of compound $64(96.9 \mathrm{mg}$,
 $81.8 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 2 h before a second portion of $\mathrm{K}_{2} \mathrm{CO}_{3}(22.6 \mathrm{mg}$, $164 \mu \mathrm{~mol})$ was introduced. After an additonal 2 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})$ and the mixture allowed to reach ambient temperature. The aqueous phase was extracted with EtOAc ($4 \times 15 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 2:3) to give the desired product as a white foam ($72.3 \mathrm{mg}, 80 \%$). $[\propto]_{D}^{20}=-53.1\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{ddd}, J=15.8,8.2,5.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.22$ (ddt, $J=15.5,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=8.9,6.2$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{td}, J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.58(\mathrm{~m}$, $2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 2 \mathrm{H})$, $2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{ddd}, J=$ $14.9,10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.75$ (ddd, $J=14.0,8.4,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37(\mathrm{ddd}, J=12.8,7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=13.7,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,144.5,140.0,136.0,136.0,135.6,135.5,134.6,134.0$, $133.5,130.0,129.6,129.6,129.3,129.2,127.6,127.6,127.4,127.2,126.5,124.4,123.5,93.9,81.4$, $80.6,80.1,74.0,74.0,73.5,72.7,72.1,71.7,71.4,67.9,65.4,58.9,43.0,39.1,38.5,37.5,35.4,34.5$, $34.3,32.1,29.9,27.2,26.8,20.8,19.5,19.3,17.5,15.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3411,2958,2930,2857$, $1719,1656,1462,1428,1360,1327,1263,1176,1111,1076,1045,823,740,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1123.7(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 1123.5757; found: 1123.5748.

Diol 11-epi-64a. Prepared analogously from compound 11-epi-64 ($20.0 \mathrm{mg}, 16.9 \mu \mathrm{~mol}$) as a white
 foam $(16.4 \mathrm{mg}, 88 \%) .[\propto]_{D}^{20}=-5.9\left(\mathrm{c}=0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.24$ -7.19 (m, 2H), 7.05 (ddd, $J=15.5,10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$ (dd, $J=$ $15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{tt}, J=11.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H})$, $5.25(\mathrm{dd}, J=14.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=9.4$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dq}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}$, $3 \mathrm{H}), 3.32(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{tt}, J=11.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dddd, $J=14.4,9.2,4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36-2.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dt}, J=13.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{ddd}, J=14.1,11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{ddd}, J=13.6,7.7$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.2$, $145.3,139.6,135.9,135.8,135.7,135.6,134.1,133.9,133.6,133.4,129.6,129.5,129.5,129.5,127.6$, $127.5,127.5,127.4,126.0,125.7,123.0,93.9,81.3,80.7,80.6,74.9,74.0,73.1,72.6,72.4,72.1,71.4$, $67.8,65.1,58.8,43.4,39.3,37.9,35.6,34.6,34.6,33.9,29.4,27.0,26.7,22.0,19.4,19.2,17.5,15.2$ ppm. IR (film): $\tilde{v}=3426,2956,2929,2857,1722,1461,1428,1390,1361,1326,1261,1178,1108$, 1077, 1043, 909, 822, 734, 702, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=1123.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}: 1123.5757$; found: 1123.5754 .

Diol 72c. Prepared analogously from compound $\mathbf{7 2 b}(20.5 \mathrm{mg}, 16.3 \mu \mathrm{~mol})$ as a white foam (17.3 mg ,
 $96 \%) .[\propto]_{D}^{20}=-2.2\left(\mathrm{c}=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.65-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{ddd}, J=15.7,7.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{tt}, J=10.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{dt}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{ddd}, J=8.8,5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{tt}, J=10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ $(\mathrm{td}, J=7.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dq}, J=9.5,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.8$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=3.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.18-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{ddt}, J=14.0,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.5,8.5$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.5,8.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=14.0,8.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=12.7,8.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=13.7,7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.6,144.7,140.0,136.0,135.9,135.6,135.6$, $134.6,134.0,133.6,133.4,129.9,129.5,129.4,129.3,127.6,127.6,127.3,127.3,126.8,124.4,123.6$, $93.9,81.3,80.6,80.1,74.0,73.7,73.3,72.9,72.6,71.7,71.4,67.9,65.5,58.9,43.0,39.2,38.5,37.4$, $35.7,34.4,34.1,33.2,30.3,27.2,26.7,20.3,19.5,19.2,17.5,15.2 \mathrm{ppm}$. IR (film): $\tilde{v}=3436,2957$, 2929, 2856, 1719, 1461, 1428, 1373, 1265, 1242, 1178, 1106, 1078, 1044, 985, 822, 739, 702, 609 cm^{-1}. MS (ESIpos) $m / z(\%)=1123.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 1123.5757; found: 1123.5760 .

Diol 11-epi-72c. Prepared analogously from compound 11 -epi-72b (19.1 $\mathrm{mg}, 15.1 \mu \mathrm{~mol})$ as a white
 foam ($15.4 \mathrm{mg}, 92 \%$). $[\alpha]_{D}^{20}=+50.6\left(\mathrm{c}=0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 12 \mathrm{H}), 6.81$ (ddd, $J=15.8,7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (tt, $J=10.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=$ $15.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{td}, J=10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (ddd, $J=8.8,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{td}, J$ $=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=3.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{ddt}, J=11.2,9.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{tt}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.41$ (dddd, $J=$ $16.4,9.4,5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.17(\mathrm{~m}, 6 \mathrm{H}), 2.09$ (dddd, $J=14.8,5.5,5.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (ddt, $J=12.3,3.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dt}, J=13.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddt}, J=12.6,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ $(\mathrm{ddd}, J=14.5,8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,144.5,140.9,135.9,135.9,135.6,135.5,134.3,133.6,133.5$, 133.3, 130.0, 129.6, 129.5, 129.4, 129.4, 127.6, 127.5, 127.4, 126.9, 125.7, 123.1, 94.1, 81.3, 80.6, $79.7,74.1,73.7,73.2,72.9,72.4,71.5,70.8,67.9,65.5,58.8,44.1,39.7,39.1,38.0,35.6,33.4,33.3$, $33.1,30.8,27.1,26.8,22.9,19.4,19.2,17.5,15.4$ ppm. IR (film): $\tilde{v}=3428,2957,2931,2857,1717$, 1462, 1428, 1361, 1267, 1179, 1111, 1079, 1045, 998, 910, 823, 736, 703, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z $(\%)=1123.7(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{65} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{Si}_{2} \mathrm{Na}$: 1123.5757; found: 1123.5760.

Putative mandelalide A (1). A Teflon vial was charged with diol 64a $(42.0 \mathrm{mg}, 38.1 \mu \mathrm{~mol})$ and THF (2.5 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine (2.5 mL) and HF-pyridine (2.5 mL) were slowly added via an Eppendorf pipette. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the ice bath was removed and stirring continued at ambient temperature for 46 h . The mixture was diluted with EtOAc (10 mL) and carefully poured into NaHCO_{3} solution (30 mL). The aqueous phase was extracted with $\mathrm{EtOAc} / \mathrm{EtOH}(9: 1,4 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right.$ to $96: 4$ to $95: 5$ to $\left.96: 4\right)$ to give the desired compound as a white amorphous solid ($19.1 \mathrm{mg}, 80 \%$). $[\propto]_{D}^{23}=-29(\mathrm{c}=0.25, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}): see table $5 ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 5; IR (film): $\tilde{v}=3414,2955,2924,2854$, 1714, 1653, 1457, 1374, 1323, 1277, 1228, 1179, 1106, 1071, 1043, 988, 955, 911, 814, $732 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=647.4(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}: 647.3402$; found: 647.3406.

Ring-expanded mandelalide \mathbf{A} isomer (65). Obtained as a by-product from the reaction described
 above. $[\alpha]_{D}^{23}=+10(\mathrm{c}=0.21, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04$ (ddd, $J=15.8,7.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{ddt}, J=15.3,10.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.3,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{dt}, J=10.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=$ $11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=11.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04$ (m, 2H), $3.81-$ $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.62(\mathrm{dq}, J=9.3$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 3 \mathrm{H})$, 2.97 (br s, 1H), $2.64-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.23(\mathrm{~m}, 7 \mathrm{H}), 1.99$ (ddt, $J=12.2$, $4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=12.1,7.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddt}, J=12.5,4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (ddd, $J=14.4,8.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=14.1,10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=14.4,8.6,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{td}, J=11.6,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.4,146.0,142.0,130.9,126.4$,
$123.1,122.8,94.0,81.4,80.8,80.6,74.2,74.0,73.3,72.7,71.4,71.1,68.1,68.0,67.9,58.9,42.8$, $39.3,38.1,37.5,37.2,36.9,35.6,32.7,30.4,18.0,17.5,14.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3427,2924,1714$, 1653, 1454, 1373, 1323, 1275, 1179, 1106, 1043, 988, $734 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=647.3(100$ $(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}$: 647.3402; found: 647.3404.

11-epi-Isomer of putative mandelalide A 11-epi-1. Prepared analogously from diol 11-epi-64a
 $(10.0 \mathrm{mg}, 9.08 \mu \mathrm{~mol})$ as a white amorphous solid $(4.8 \mathrm{mg}, 85 \%) .[\propto]_{D}^{23}=$ $-25.8(\mathrm{c}=0.41, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see table $6 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 6 . IR (film): $\tilde{v}=3411,2924,2854,1716,1654$, 1457, 1373, 1246, 1178, 1107, 1045, 992, 812, $733 \mathrm{~cm}^{-1}$. MS (ESIpos) m / z $(\%)=647.4(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}$: 647.3402; found: 647.3402.

Reassigned mandelalide A (6). Prepared analogously from diol 72c ($14.0 \mathrm{mg}, 12.7 \mu \mathrm{~mol}$) as a white
 amorphous solid ($5.6 \mathrm{mg}, 71 \%$). $[\propto]_{D}^{23}=-40.1(\mathrm{c}=0.27, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 7. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 7. IR (film): $\tilde{v}=3404,2958,2922,1716,1657,1454,1372,1318,1262,1221$, 1181, 1105, 1042, 985, 813, $734 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=647.5(100$ $(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}$: 647.3402; found: 647.3401.

11-epi-Isomer of actual mandelalide A 11-epi-6. Prepared analogously from diol 11-epi-72c
 $(15.0 \mathrm{mg}, 13.6 \mu \mathrm{~mol})$ as a white amorphous solid ($5.8 \mathrm{mg}, 68 \%$). $[\propto]_{D}^{23}=$ $-18.8\left(\mathrm{c}=0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see table $8 .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): see table 8. IR (film): $\tilde{v}=3424,2921,1713,1655$, 1454, 1369, 1329, 1262, 1181, 1132, 1105, 1044, 990, $813 \mathrm{~cm}^{-1} . \mathrm{MS}$ $($ ESIpos $) m / z(\%)=647.37(100(\mathrm{M}+\mathrm{Na}))$. HRMS $($ ESIpos $): m / z:$ calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{11} \mathrm{Na}$: 647.3402 ; found: 647.3402 .

The following Scheme shows key NOESY contacts observed for proposed Mandelalide A (1), 11-epi1 and actual Mandelalide A (6). The structural assignments made above for the different building blocks were confirmed by the observed NOE contacts between $\mathrm{H} 5, \mathrm{H} 7$ and H 9 for the southern THP unit. Furthermore, the NOE contacts between $\mathrm{H} 17, \mathrm{H} 18, \mathrm{H} 19$ and H 20 indicate once again an all-cis configured THF ring. Interesting to note are the different NOE contacts across the macrocycle for the three isomers. Due to extensive signal overlap in the ${ }^{1} \mathrm{H}$ NMR spectrum of 11-epi-6, no NOE contacts were assigned.
key NOESY correlations for proposed Mandelalide A (1)

key NOESY correlations for (11-ері)-1

different colors were used only for better overview

For comparison with the natural product, the ${ }^{13} \mathrm{C}$ NMR spectra of all synthetic isomers of Mandelalide A were referenced to $\mathrm{CDCl}_{3}=77.23 \mathrm{ppm}$ as in the isolation paper ${ }^{[13]}$ (in other spectra reported above, the solvent signal was set to 77.00 ppm).

Table $5:{ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of putative Mandelalide $\mathrm{A}(\mathbf{1})\left(4.2 \mathrm{mg}\right.$ in $\left.0.45 \mathrm{~mL} \mathrm{CDCl} \mathrm{Cl}_{3}\right)$.

$\begin{array}{\|c} \hline \text { atom } \\ \mathrm{n}^{\circ} \end{array}$	${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$)					${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 150	
	δ / ppm	m	J/Hz	COSY	NOESY	δ / ppm	HMBC
1	-	-	-			167.3	
2	5.92	dt	15.6, 1.5	3, (4ab)	4(a)b, (25)	123.1	1, (3), 4
3	7.02	ddd	15.5, 8.6, 5.5	2, 4a(b)	4a(b), 5, (6a)	146.3	1, 2, 4, 5
4a	2.34	ddd	15.2, 6.5, 5.6, 1.8	(3), 4b, 5	(2), 3, 4b, 5		2, 3, 5, 6
4b	2.46	dddd	15.2, 8.6, 3.7, 1.2	3, 4a, (5)	2, 3, 4a, 5, 25	38.5	2, 3, 5, (6)
5	3.42	m		4a(b), 6a	(3), 4ab, 6b, 7, 9	73.4	3, (4), 7, 9
6a	1.26	m		5, 6b, 7			4, 5, 7, 8
6b	1.94	ddt	12.0, 4.6, 1.9	$6 \mathrm{a}, 7$	(5), $6 \mathrm{a}, 7,1^{\prime}$	36.7	7, 8
7	3.77	m		$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6b, 8b, 9, 1'	72.8	6, 8, (1)
8 a	1.22	m	-	7, 8b, 9			-
8 b	1.84	dddd	12.5, 4.2, 1.9, 1.9	7, 8a, (9)	7, 8a, 9, 1', 5^{\prime}	39.3	6,7
9	3.33	m	-	8a(b), 10ab	5, 7, 8b, 10b, 11, 25	73.1	(5), (7), 10, 11
10a	1.27	m	-	9, 10b, 11			-
10b	1.69	ddd	14.1, 9.1, 5.1	9, 10a, (11)	8a, 9, 10a, 11, 12, 13, 25		8, 9, 11, 12, 25
11	2.44	m	-	10a(b), 12, 25	8b, 9, 10b, 12, 13, 25	32.8	9, 10, 12, 13, 25
12	5.61	dd	15.2, 7.6	11, 13	(10ab), 11, 14, 25	140.9	10, 11, 14, (15), 25
13	6.22	ddt	15.2, 10.8, 1.0	12, 14	10b, 11, 16ab, 25	123.8	11, 14, 15
14	6.01	tt	10.8, 1.8	13, 15	12, 15	130.5	12, 13, 16
15	5.27	ddd	10.8, 8.3, 7.5	14, 16ab	14, 16ab, 17, (26)	126.5	13, 16, 17
16a	2.14	dddd	14.8, 6.8, 5.1, 1.9	15, 16b, 17	13, (15), 16a, 21, (26)		14, 15, 17, 18
16b	2.29	dtd	14.8, 8.5, 1.6	15, 16a, 17	13, 15, 16b, 21, 26		(13), 14, 15, 17, 18
17	4.03	ddd	8.6, 7.2, 4.9	16ab, 18	15, 18, (20), (26)	81.3	15, 19, 20,26
18	2.43	m	-	17, 19a(b), 26	17, 19ab, 20, 26	37.1	16, 17, 19, (20), 26
19a	1.28	m	-	18, 19b, 20	(18), 19b, 21, 26	360	-
19b	2.04	dt	12.3, 6.7	(18), 19a, 20	18, 19a, 20, (26)	36.0	17, 18, (20), 21, 26
20	3.71	ddd	8.4, 8.2, 6.7	19ab, 21	17, 18, 19b, 21, 22a(b)	82.7	(17), (18), 19, 21,
21	3.45	m	-	20, 22(a)b	13, 19a, 22b, 23, 25, 26	72.5	(19), 20, 22, 23
22a	1.54	ddd	14.4, 10.5, 2.5	21, 22b, (23)	20, 21, 22b, 23, 24ab	34.	20, 23, 24
22b	1.77	ddd	14.4, 10.8, 2.0	(21), 22a, 23	(19b), 21, 22a, 23, (24a)		(20), 23, 24
23	5.24	m	-	22(a)b, 24ab	21, 22a(b)	72.5	(22), (1)
24a	3.65	m	-	23, 24b	(22ab), 24b		22, 23
24b	3.78	dd	12.1, 3.3	23, 24a	24a		22
25	1.00	d	6.7	11	2, 9, (10b), 11, 12, 13, 21	20.1	10, 11, 12
26	0.98	d	7.0	18	15ab, 16a(b), (17), 18, (21)	14.7	17, 18, 19
1 '	5.02	d	1.5	2 '	6b, 7, 2', 7'	94.0	7, 2', $3^{\prime}, 5^{\prime}$
2^{\prime}	3.40	dd	3.8, 1.5	$1^{\prime}, 3^{\prime}$	$1^{\prime}, 7{ }^{\prime}, 3^{\prime}$	80.9	$3^{\prime}, 4^{\prime}, 7{ }^{\prime}$
$3 '$	3.69	m	-	2', 4'	(19), (2'), 5^{\prime}	71.7	(2'), 4^{\prime}
4^{\prime}	3.34	t	9.4	$3^{\prime}, 5^{\prime}$	$6^{\prime}, 7{ }^{\prime}$	74.2	$3^{\prime}, 5^{\prime}, 6^{\prime}$
5'	3.63	dd	9.4, 6.1	4', 6'	(2'), $3^{\prime}, 6^{\prime}, 8 \mathrm{~b}$	68.2	(1'), $3^{\prime}, 4^{\prime},\left(6^{\prime}\right)$
6'	1.28	d	6.3	5^{\prime}	$1^{\prime}, 4^{\prime}, 5^{\prime}$	17.7	4', 5^{\prime}
$7{ }^{\prime}$	3.46	s	-	-	$1^{\prime}, 6$	59.2	2^{\prime}
OHa	2.56-2.33	-	-	21		-	21,22
OHb	2.56-2.33	-	-			-	
OHc	2.44-2.34	-	-	$3 '$		-	3^{\prime}
OHd	2.78-2.64	brs	-	4'		-	$4 '$

Table 6: $\quad{ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of 11-epi-Isomer of putative mandelalide A (11-epi-1) (3.1 mg in $0.25 \mathrm{~mL} \mathrm{CDCl}_{3}$).

atom n°	${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$)					${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$, 150 MHz)	
	δ / ppm	m	J/Hz	COSY	NOESY	δ / ppm	HMBC
1	-	-	-		-	166.8	-
2	5.92	dt	15.6, 1.1	3, (4a)	3, 4b	123.6	1, 3, 4, (5)
3	7.09	ddd	15.6, 8.2, 6.7	2, 4ab	2, 4ab, 5, 11, 13, (21)	146.1	1, 2, 4, 5
4a	2.31	dddd	14.3, 8.2, 2.7, 0.8	3, 4b, (5)	2, 3, 4b, 5, (6b)	39.5	2, 3, 5, (6)
4b	2.39	m	-	3, 4a, 5	2, 3, 4a, 6a	3.5	2, 3, 5, 6
5	3.26	dddd	11.2, 10.5, 3.0, 2.1	4a, 4b, 6a(b)	2, 3, 4a, 6b, 7, 9	74.0	(3), (4), (7), (9)
6a	1.15	ddd	11.8, 11.7, 11.6	5, 6b, 7	4ab, 6b, 8a, 1'		4, 5, 7, 8
6b	1.98	ddt	12.2, 4.7, 1.9	5, 6a, 7	4a, 5, 6a, 7, 1^{\prime}	38.2	(5), 7, 8
7	3.76	m	-	6a(b), 8a(b)	$5,6 b, 8 b, 9,1^{\prime}$	72.7	8 8, (9), 1^{\prime}
8 a	1.27	m	-	7, 8b, 9	$6 \mathrm{a}, 8 \mathrm{~b}$	39.2	6, 7, 9, 10
8 b	1.75	ddt	12.4, 4.7, 1.9, 1.7	7, 8a, (9)	7, 8a, 9, 10a		6, 7, 9
9	3.16	tt	11.1, 1.5	8a, 10(a)b	5, 7, 8b, 10a	73.2	5, 7, 10, 11
10a	1.14	m	-	(9), 10b, 11	8b, 9, 10b, (12), (25)		11, 12, 25
10b	1.52	ddd	13.9, 11.0, 2.8	9, (11), 10a	(8a), 10a, 11, 25	43.5	9, 11, 12, 25
11	2.48	m	-	10a, 12, 25	9, 10b, (12), 13, 25	34.1	9, 10, 12, 13, (25)
12	5.32	dd	14.9, 9.7	11, 13	(9), 10a, (11), 14, 25	141.3	10, 11, 14, 25
13	6.10	dd	14.9, 11.0	12, 14	(3), 11, 16(a)b, (21)	124.9	11, 14, 15
14	6.00	ddt	11.0, 10.9, 1.5	(10ab), 13, 15	12, 15, 16b	130.6	12, 13, 16
15	5.20	m	-	14, 16ab	13, 14, 16ab, 17, 26	126.2	13, 16, 17
16a	2.08	ddd	14.6, 5.9, 1.9	15, 16b, 17	13, 21, 26	31.0	(13), 14, 15, 17, 18
16b	2.25	dddd	14.7, 9.0, 7.5, 1.4	(14), 15, 16a, 17	13, 19a, 21, 26		14, 15, 17, 18
17	3.99	dt	7.3, 6.2	18, 16ab	15, 18, 20, (26)	81.8	15, 19, 20,26
18	2.46	m	-	17, 19ab, 26	17, 19(a)b, 20, 23, 26	36.9	16, 17, 19, 26
19a	1.26	m	-	18, 19b, 20	(18), 19b, 21, 26	36	18, (20), 21, 26
19b	2.09	ddd	12.3, 7.1, 7.1	(18), 19a, 20	19a, 21		18, 20, 21, 26
20	3.74	m	-	19ab, 21	17, 18, 19b, 21-OH, (22b)	82.1	17, 19, 21, 22
21	3.46	dddd	9.1, 7.6, 2.8, 1.6	20, 22ab, OHa	(3), 13, 19a, 22ab, 23, OHa	73.3	20, 22, 23
22a	1.55	ddd	14.7, 9.2, 2.1	21, 22b, (23)	21, 22b, 23, 24ab		20, 21, 24
22b	1.88	dddt	14.4, 11.5, 1.4	21, 22a, 23	19a(b), 21, 22a, 23, 24ab	34.7	20, 23, 24
23	5.23	dddd	11.2, 5.3, 2.8, 2.7	22(a)b, 24ab	21, 22ab, 24ab	73.9	(1), 22
24a	3.65	m	-	23, 24b	22ab, 24b, 24-OH		22, 23
24b	3.79	m	-	23, 24a	22a(b), 23, 24a, 24-OH	65.7	22
25	0.98	d	6.8	11	10ab, 11, 12	22.0	10, 11, 12
26	0.98	d	7.0	18	16a(b), (15), (17), 18	14.9	17, 18, 19
1^{\prime}	4.99	d	1.2	2'	2', 7', 6b, 7	94.1	2', 3', 5', 7
2'	3.38	dd	3.8, 1.5	$1^{\prime}, 3^{\prime}$	$1^{\prime}, 3^{\prime}, 3^{\prime}-\mathrm{OH}, 7^{\prime}$	80.9	3', 4', 7'
3'	3.68	td	9.7, 3.8	$2^{\prime}, 4^{\prime}$, OHc	$2^{\prime}, 5^{\prime}, \mathrm{OHc}, \mathrm{OHd}$	71.6	4^{\prime}
4'	3.33	td	9.5, 1.9	3^{\prime}, 5^{\prime}, OHd	$1^{\prime}, 6{ }^{\prime}, \mathrm{OHc}$, OHd	74.2	$3^{\prime}, 5^{\prime}, 6^{\prime}, 7{ }^{\prime}$
5'	3.61	dq	9.4, 6.2	4', 6'	3', 6', 8b	68.2	$1^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$
6'	1.26	d	6.2	$5 '$	1', 4', 5', 7'	17.7	4', 5^{\prime}
$7{ }^{\prime}$	3.44	s	-		$1^{\prime}, 2^{\prime}$, OH3	59.1	$2 '$
OHa	2.74-2.72	brs	-	21		-	21,22
OHb	2.37	m	-	$3{ }^{\prime}$		-	$2^{\prime}, 3^{\prime}$
OHc	2.38	m	-	24 ab		-	24
OHd	2.45	m	-	4'		-	$3^{\prime}, 4^{\prime}, 5^{\prime}$

Table 7: ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of synthetic mandelalide $\mathrm{A}(\mathbf{6})(5.2 \mathrm{mg}$ in 0.25 mL CDCl 3).

atom n°	${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$	
	δ / ppm	m	J/Hz	COSY	NOESY	δ	HMBC
1	-	-	-	-	-	167.4	-
2	6.01	dt	15.5, 0.8	3, 4a	4ab, (5)	123.1	1, 3, 4, (5)
3	6.96	ddd	15.3, 10.4, 4.9	2, 4ab	4ab, 5, 25	147.1	1, 2, 4, 5
4a	2.36	m	-	3, 4b, (5)	$2,3,5,6 a, 12,13,25$		2, 3, 5, (6)
4b	2.39	ddd	13.9, 10.8, 10.7	3, 4a, 5			2, 3, 5, (6)
5	3.37	m	-	4a, 4b, 6ab	2, 3, 4ab, 6b, 7	73.9	3, 4, 9
6a	1.20	m	-	5, 6b, 7	$6 \mathrm{~b}, 8 \mathrm{a}, 10 \mathrm{~b}$	6	4, 5, 7, 8
6b	2.02	dddd	12.1, 5.6, 2.3, 1.6	5, 6a, 7, (8b)	4b, (5), 6a, 7, 1^{\prime}	37.6	(5), 7, 8, 2^{\prime}
7	3.82	dddd	11.3, 10.6, 4.8, 4.5	$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6b, 8b, 9, 1'	73.1	$8,(9), 1^{\prime}$
8 a	1.22	m	-	7, 8b, 9	8b, 10b, (12), 25		$6,7,9,10$
8 b	1.87	dddt	13.2, 7.8, 5.3, 1.9	$6 \mathrm{~b}, 7,8 \mathrm{a}, 9$	7, 8a, 9, 1', 5'	39.7	6, 7, 9
9	3.31	tt	10.7, 2.1	8ab, 10ab	7, 8b, 10a, 25	72.5	(10)
10a	1.21	m	-	9, 10b, 11	10b, (11), 12, 25		$8,11,12,25$
10b	1.52	ddd	14.1, 11.1, 3.3	9, 10a, (11)	10a, 11, (12)	43.1	8, 9, 11, 12, 25
11	2.37	m	-	10a, 12, 25	10ab, 12, 13, 25	34.2	9, 10, 12, 13, 25
12	5.44	dd	14.9, 9.9	11, 13	(10a), 11, 14, 25	141.5	10, 11, 13, 14, 25
13	6.27	dd	14.8, 11.1	12, 14	11, 16b, 21, (25)	123.9	10, 11, 14, 15
14	6.05	dd	10.9, 10.9	13, 15	12, 15	131.3	12, 13, 16, 17
15	5.28	dt	10.8, 5.6	14, 16ab	14, 16ab, 17	126.9	13, 16, 17
16a	1.88	m	-	15, 16b, 17	15, 16b, 17, 26		14, 15, 17, 18
16b	2.25	m	m	15, 16a, 17	13, (15), 16a, 19a, 21, 26		14, 15, 17, 18
17	3.98	ddd	10.9, 8.5, 1.7	16ab, 18	15, 16a, 18, 20, 26	81.0	15, (18), 19, 20
18	2.52	dddq	12.3, 7.0, 7.0, 6.9	17, 19ab, 26	17, 19b, 20, 26	37.4	16, 17, (20), 26
19a	1.17	ddd	12.2, 12.1, 10.2	18, 19b, 20	16b, 19b, 20, 21, 22b, 26		18, (20), 21, 26
19b	2.01	ddd	11.8, 7.1, 6.0	18, 19a, 20	18, 19a, 22b, 20	36.8	17, 18, 21
20	3.63	m	-	19ab, 21	17, 18, 19b, 22a	83.2	(19), 21, 22
21	3.42	ddd	11.2, 8.9, 1.8	20, 22ab, (OHa)	13, 18, 19a, 22b, 23, OHa	73.1	19, 20, 22, (23)
22a	1.46	ddd	14.2, 11.3, 1.9	21, 22b, 23	20, 22b, 23, 24b		20, 21
22b	1.76	ddt	12.8, 12.6, 1.5	21, 22a, 23	(19ab), 20, 21, 22a, (23)	34.1	21, 24
23	5.23	dddd	11.6, 5.1, 3.1, 2.0	22ab, 24ab	(OHb, 18), 22ab, 21, 24ab	72.3	1,22
24a	3.61	m	-	23, 24b	22a(b), 23, 24b	661	22, 23
24b	3.79	m	-	23, 24a	22a, 23, 24	66.1	22, 23
25	0.85	d	6.6	11	2, 3, 9, 10a, 11, 12, (13)	18.3	10, 11, 12
26	1.02	d	7.0	18	16ab, (17), 18, 19a(b)	14.5	17, 18, 19
1^{\prime}	5.02	d	1.1	2^{\prime}	6b, 7, 8b, 2', 6', 7'	94.2	2', 3', 5', 7
2^{\prime}	3.40	dd	3.9, 1.5	$1^{\prime}, 3^{\prime}$	$1^{\prime}, 3^{\prime}, 7^{\prime}$	80.8	3', 4', 7'
$3 '$	3.68	td	9.8, 3.7	2', 4', OHc	(1'), 2', 5', OHd	71.7	4^{\prime}
4^{\prime}	3.34	dd	10.5, 9.3	3', 5', OHd	7, 6', OHd	74.3	$3^{\prime}, 5^{\prime}, 6^{\prime}$
5'	3.62	dd	9.9, 5.9	4', 6'	3', 6'	68.1	1', 3', 4', 6'
$6{ }^{\prime}$	1.26	d	6.3	5'	4', 5^{\prime}	17.7	4', 5'
$7{ }^{\prime}$	3.45	S	-	-	$1 '$	59.1	2^{\prime}
OHa	2.69	br s	-	21		-	21,22
OHb	2.31	br s	-	24ab		-	(24)
OHc	2.35	m	-	$3 '$		-	3', 4'
OHd	2.53	br s	-	4^{\prime}		-	2', 5'

Table 8: $\quad{ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data of 11-epi-isomer of actual mandelalide A 11-epi-6 (3.5 mg in $0.25 \mathrm{~mL} \mathrm{CDCl}_{3}$).

atom n°	${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$				${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$	
	δ / ppm	m	J/Hz	COSY	δ / ppm	HMBC
1	-	-	-	-	167.4	-
2	5.93	dd	15.5, 0.7	3, (4a)	123.4	1, 3, 4, 5
3	6.98	ddd	15.3, 8.1, 7.0	2, 4a	146.8	1, 2, 4, 5
4a	2.31	m	-	3, 4b, 5	39.5	2, 3, 5, 6
4 b	2.42	ddd	14.1, 6.3, 3.2	3, 4a, 5	3.5	2, 3, 5, 6
5	3.30	m	-	4ab, 6a(b)	74.2	(3), 4, 6, 7, (9)
6 a	1.17	dt	11.5, 11.4	5, 6b, 7	37.5	$5,7,8$
6 b	2.00	m	-	(5), 6a, 7	7.5	7, 8, 2'
7	3.75	m	-	$6 \mathrm{ab}, 8 \mathrm{ab}$	73.1	$8,1^{\prime}$
8 a	1.23	m	-	7,8b, 9	39.5	$6,7,9,10$
8 b	1.82	m	-	7, 8a, 9	39.5	$6,7,9,10$
9	3.27	tt	9.9, 2.1	$8 \mathrm{a}, 10 \mathrm{ab}$	72.9	8, 10, 11
10a	1.37	ddd	14.1, 8.7, 2.7	9, 10b, 11		8, 11, 12, (25)
10b	1.49	ddd	14.3, 9.4, 5.1	9, 10a, 11	43.0	$8,11,12,25$
11	2.45	m	-	10ab, 12, 25	33.5	10, 12, 13, 25
12	5.60	dd	15.2, 7.7	11, 13	141.0	10, 11, 14, 25
13	6.20	dd	15.2, 10.7	12, 14	124.7	11, 14, (15)
14	6.00	dd	10.8, 10.8	13, 15	130.5	12, 13, 16
15	5.28	td	10.5, 7.7	14, 16ab	126.8	13, 16, 17
16a	2.21	m	-	(14), 15, 16b, 17		14, 15, 17, 18
16b	2.20	m	-	15, 16a, 17	31.5	14, 15, 17, 18
17	4.01	q	6.7	16ab, 18	80.9	15, (18), 19, 20, 26
18	2.44	m	-	17, 19a(b), 26	37.5	17, 19, 26
19a	1.28	m	-	18, 19b, 20		17, 18, 21, 26
19b	2.00	m	-	19a	35.8	18, 20, 21, 26
20	3.73	ddd	9.3, 6.9, 6.9	19ab, 21	82.5	19, 21, 22
21	3.76	m	-	20, 22ab	73.1	19, 22
22a	1.53	m	-	21, 22b, 23	33.8	21, 24
22b	1.83	ddd	14.1, 11.0, 2.8	21, 22a, 23	33.8	19, 20, 23
23	5.17	ddd	10.2, 8.1, 1.9	22ab, 24ab	72.2	19, 21, 22
24a	3.67	m	-	23, 24b	65.6	22, 23
24b	3.78	m	-	23, 24a	65.6	22, 23
25	1.00	d	6.9	11	21.4	10, 11, 12
26	0.98	d	6.9	18	14.7	17, 18, 19
1^{\prime}	5.00	d	1.3	$2 '$	94.3	7, 2', 3', 5^{\prime}
2^{\prime}	3.38	dd	3.6, 1.3	$1^{\prime}, 3^{\prime}$	80.8	$3^{\prime}, 4^{\prime}, 7^{\prime}$
3^{\prime}	3.69	m	-	$2^{\prime}, 4^{\prime}$	71.7	4'
4^{\prime}	3.33	dd	9.4, 9.4	3', 5'	74.4	$3^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}$
5'	3.61	m	-	$4^{\prime}, 6^{\prime}$	68.1	$3^{\prime}, 4^{\prime}, 6^{\prime}$
6^{\prime}	1.26	d	6.2	$4^{\prime}, 5^{\prime}$	17.8	5'
$7{ }^{\prime}$	3.45	d	0.6	-	59.1	$2 '$
OHa				not assigned		
OHb				not assigned		
OHc				not assigned		
OHd				not assigned		

Comparison of synthetic isomers and natural mandelalide \mathbf{A}

synthetic 1
$\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$

natural mandelalide A $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right.$)

Table 9: Comparison of the ${ }^{1} \mathrm{H}$ NMR chemical shifts of $\mathbf{1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and 11-epi-1 with the data of the natural product (Lit. ${ }^{[13]} ; 700 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

atom n°	δ (Lit.) /ppm	$\delta(1) / \mathrm{ppm}$	$\Delta \delta$ (1-Lit.)	$\begin{gathered} \delta(11-e p i-1) \\ / \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{gathered} \Delta \delta \text { (11-epi- } \\ \text { 1-Lit) } \end{gathered}$
1	-	-	-	-	-
2	6.01	5.92	-0.09	5.92	-0.09
3	6.97	7.02	0.05	7.09	0.12
4 a	2.36	2.34	-0.02	2.31	-0.05
4 b	2.39	2.46	0.07	2.39	0.00
5	3.36	3.42	0.06	3.26	-0.10
6 a	1.20	1.26	0.06	1.15	-0.05
6 b	2.02	1.94	-0.08	1.98	-0.04
7	3.82	3.77	-0.05	3.76	-0.06
8 a	1.22	1.22	0.00	1.27	0.05
8 b	1.87	1.84	-0.03	1.75	-0.12
9	3.32	3.33	0.01	3.16	-0.16
10a	1.21	1.27	0.06	1.14	-0.07
10b	1.51	1.69	0.18	1.52	0.01
11	2.37	2.44	0.07	2.48	0.11
12	5.45	5.61	0.16	5.32	-0.13
13	6.28	6.22	-0.06	6.10	-0.18
14	6.05	6.01	-0.04	6.00	-0.05
15	5.28	5.27	-0.01	5.20	-0.08
16a	1.88	2.14	0.26	2.08	0.20
16b	2.28	2.29	0.01	2.25	-0.03
17	3.98	4.03	0.05	3.99	0.01
18	2.52	2.43	-0.09	2.46	-0.06
19a	1.17	1.28	0.11	1.26	0.09
19b	2.01	2.04	0.03	2.09	0.08
20	3.63	3.71	0.08	3.74	0.11
21	3.42	3.45	0.03	3.46	0.04
22a	1.46	1.54	0.08	1.55	0.09
22b	1.76	1.77	0.01	1.88	0.12
23	5.23	5.24	0.01	5.23	0.00
24a	3.61	3.65	0.04	3.65	0.04
24b	3.81	3.78	-0.03	3.79	-0.02
25	0.85	1.00	0.15	0.98	0.13
26	1.03	0.98	-0.05	0.98	-0.05
1^{\prime}	5.02	5.02	0.00	4.99	-0.03
$2 '$	3.40	3.40	0.00	3.38	-0.02
3'	3.68	3.69	0.01	3.68	0.00
$4 '$	3.34	3.34	0.00	3.33	-0.01
5'	3.62	3.63	0.01	3.61	-0.01
6^{\prime}	1.27	1.28	0.01	1.26	-0.01
$7{ }^{\prime}$	3.45	3.46	0.01	3.44	-0.01

Table 10: Comparison of the ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{1}$ and 11 -epi- $\mathbf{1}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ with the data of the natural product (Lit. ${ }^{[13]} ; 175 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

atom n°	δ (Lit.) /ppm	$\delta(1) / \mathrm{ppm}$	$\Delta \delta$ (1-Lit.)	$\begin{gathered} \delta(11-e p i-1) \\ / \mathrm{ppm} \end{gathered}$	$\begin{gathered} \Delta \delta \text { (11-epi- } \\ \text { 1-Lit) } \end{gathered}$
1	167.5	167.3	-0.2	166.8	-0.7
2	123.1	123.1	0.0	123.6	0.5
3	147.1	146.3	-0.8	146.1	-1.0
4	38.8	38.5	-0.3	39.5	0.7
5	73.9	73.4	-0.5	74.0	0.0
6	37.6	36.7	-0.9	38.2	0.6
7	73.1	72.8	-0.3	72.7	-0.4
8	39.7	39.3	-0.4	39.2	-0.5
9	72.5	73.1	0.6	73.2	0.7
10	43.1	42.9	-0.2	43.5	0.4
11	34.2	32.8	-1.4	34.1	-0.1
12	141.5	140.9	-0.6	141.3	-0.2
13	123.9	123.8	-0.1	124.9	1.0
14	131.3	130.5	-0.8	130.6	-0.7
15	126.9	126.5	-0.4	126.2	-0.7
16	31.1	31.2	0.1	31.0	-0.1
17	81.0	81.3	0.3	81.8	0.8
18	37.4	37.1	-0.3	36.9	-0.5
19	36.8	36.0	-0.8	36.4	-0.4
20	83.2	82.7	-0.5	82.1	-1.1
21	73.0	72.5	0.4	73.3	0.3
22	34.1	34.1	0.0	34.7	0.6
23	72.3	72.5	0.2	73.9	1.7
24	66.1	65.7	-0.4	65.7	-0.4
25	18.3	20.1	1.8	22.0	3.7
26	14.5	14.7	0.2	14.9	0.4
$1 '$	94.2	94.0	-0.2	94.1	-0.1
2^{\prime}	80.8	80.9	0.1	80.9	0.1
3'	71.7	71.7	0.0	71.6	-0.1
4^{\prime}	74.3	74.2	-0.1	74.2	-0.1
5'	68.1	68.2	0.1	68.2	0.1
6^{\prime}	17.7	17.7	0.0	17.7	0.0
$7{ }^{\prime}$	59.1	59.2	0.1	59.1	0.0

synthetic 6
($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$)
 $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right)$

Table 11: Comparison of the ${ }^{1} \mathrm{H}$ NMR chemical shifts of 6 and 11-epi- $6\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ with the data of the natural product (Lit. ${ }^{[13]} ; 700 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

atom n°	δ (Lit.) /ppm	$\delta(6) / \mathrm{ppm}$	$\Delta \delta$ (6-Lit.)	(11-epi-6) /ppm	$\Delta \delta$ (11-epi-6-Lit.)
1	-	-	-	-	-
2	6.01	6.01	0.00	5.93	-0.08
3	6.97	6.96	-0.01	6.98	0.01
4a	2.36	2.36	0.00	2.31	-0.05
4b	2.39	2.39	0.00	2.42	0.03
5	3.36	3.37	0.01	3.3	-0.06
6a	1.20	1.20	0.00	1.17	-0.03
6 b	2.02	2.02	0.00	2.00	-0.02
7	3.82	3.82	0.00	3.75	-0.07
8 a	1.22	1.22	0.00	1.23	0.01
8 b	1.87	1.87	0.00	1.82	-0.05
9	3.32	3.31	-0.01	3.27	-0.05
10a	1.21	1.21	0.00	1.37	0.16
10b	1.51	1.52	0.01	1.49	-0.02
11	2.37	2.37	0.00	2.45	0.08
12	5.45	5.44	-0.01	5.6	0.15
13	6.28	6.27	-0.01	6.2	-0.08
14	6.05	6.05	0.00	6.00	-0.05
15	5.28	5.28	0.00	5.28	0.00
16a	1.88	1.88	0.00	2.21	0.33
16b	2.28	2.25	-0.03	2.2	-0.08
17	3.98	3.98	0.00	4.01	0.03
18	2.52	2.52	0.00	2.44	-0.08
19a	1.17	1.17	0.00	1.28	0.11
19b	2.01	2.01	0.00	2.00	-0.01
20	3.63	3.63	0.00	3.73	0.10
21	3.42	3.42	0.00	3.76	0.34
22a	1.46	1.46	0.00	1.53	0.07
22b	1.76	1.76	0.00	1.83	0.07
23	5.23	5.23	0.00	5.17	-0.06
24a	3.61	3.61	0.00	3.67	0.06
24b	3.81	3.79	-0.02	3.78	-0.03
25	0.85	0.85	0.00	1.00	0.15
26	1.03	1.02	-0.01	0.98	-0.05
$1 '$	5.02	5.02	0.00	5.00	-0.02
2^{\prime}	3.40	3.40	0.00	3.38	-0.02
3^{\prime}	3.68	3.68	0.00	3.69	0.01
4^{\prime}	3.34	3.34	0.00	3.33	-0.01
5'	3.62	3.62	0.00	3.61	-0.01
6^{\prime}	1.27	1.26	-0.01	1.26	-0.01
$7{ }^{\prime}$	3.45	3.45	0.00	3.45	0.00

Table 12: Comparison of the ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{6}$ and 11 -epi- $\mathbf{6}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) with the data of the natural product ($\mathrm{Lit} .{ }^{[13]} ; 175 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

atom n°	δ (Lit.) /ppm	$\delta(6) / \mathrm{ppm}$	$\Delta \delta$ (6-Lit.)	$\begin{gathered} \delta(11-\text { epi-6) } \\ / \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{gathered} \Delta \delta \text { (11-epi- } \\ \text { 6-Lit.) } \end{gathered}$
1	167.5	167.4	-0.1	167.4	-0.1
2	123.1	123.1	0.0	123.4	0.3
3	147.1	147.1	0.0	146.8	-0.3
4	38.8	38.8	0.0	39.5	0.7
5	73.9	73.9	0.0	74.2	0.3
6	37.6	37.6	0.0	37.5	-0.1
7	73.1	73.1	0.0	73.1	0.0
8	39.7	39.7	0.0	39.5	-0.2
9	72.5	72.5	0.0	72.9	0.4
10	43.1	43.1	0.0	43	-0.1
11	34.2	34.2	0.0	33.5	-0.7
12	141.5	141.5	0.0	141	-0.5
13	123.9	123.9	0.0	124.7	0.8
14	131.3	131.3	0.0	130.5	-0.8
15	126.9	126.9	0.0	126.8	-0.1
16	31.1	31.1	0.0	31.5	0.4
17	81.0	81	0.0	80.9	-0.1
18	37.4	37.4	-0.1	37.5	0.1
19	36.8	36.8	0.0	35.8	-1.0
20	83.2	83.2	0.0	82.5	-0.7
21	73.0	73.1	-0.1	73.1	0.1
22	34.1	34.1	0.0	33.8	-0.3
23	72.3	72.3	0.0	72.2	-0.1
24	66.1	66.1	0.0	65.6	-0.5
25	18.3	18.3	0.0	21.4	3.1
26	14.5	14.5	0.0	14.7	0.2
$1{ }^{\prime}$	94.2	94.2	0.0	94.3	0.1
$2 '$	80.8	80.8	0.0	80.8	0.0
3'	71.7	71.7	0.0	71.7	0.0
$4 '$	74.3	74.3	0.0	74.4	0.1
5'	68.1	68.1	0.0	68.1	0.0
6^{\prime}	17.7	17.7	0.0	17.8	0.1
$7{ }^{\prime}$	59.1	59.1	0.0	59.1	0.0

Studies towards the Synthesis of Mandelalide C and D.

1-((tert-Butyldiphenylsilyl)oxy)tridecan-2-ol (S1). A flame-dried Schlenck flask was charged with a
 solution of n-decylmagnesium bromide (1 m in $\mathrm{Et}_{2} \mathrm{O}, 22 \mathrm{~mL}, 22 \mathrm{mmol}$), which was cooled to $-15^{\circ} \mathrm{C}$. Copper cyanide ($36 \mathrm{mg}, 0.40 \mathrm{mmol}$) was, followed by a solution of (R)-tert-butyl(oxiran-2-ylmethoxy)diphenylsilane (29) ($6.25 \mathrm{~g}, 20.0 \mathrm{mmol}$) in THF $(17 \mathrm{~mL})$ via dropping funnel. After stirring for 30 min , the reaction mixture was quenched by pouring into sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL). The aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic layers were dried over NaSO_{4} and concentrated. The pale yellow residue $(8.9 \mathrm{~g}$, 98%) was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.62$ $7.56(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 6 \mathrm{H}), 3.68-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=9.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 18 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.83-0.78(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.6,135.5,133.3,133.3,129.8,127.7,72.0,68.1,32.8,31.9,29.7,29.6,29.6$, 29.6, 29.5, 29.3, 26.9, 25.5, 22.7, 19.3, 14.1 ppm . IR (film): $\tilde{v}=3470,2924,2854,1754,1463,1428$, 1361, 1263, 1189, 1110, 1031, 1007, 938, 882, 823, 739, 700, 638, $613 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=397$ (15), 229 (12), 200 (18), 199 (100), 139 (49), 111 (6), 97 (8) 69 (5). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{Na}: 477.3159$; found: 477.3158 .
(\boldsymbol{R})-1-((tert-Butyldiphenylsilyl)oxy)tridecan-2-yl (E)-but-2-enoate (S2). (E)-Crotonic acid (3.06 g,
 $35.6 \mathrm{mmol})$, DMAP ($7.25 \mathrm{~g}, 59.3 \mathrm{~g}$) and N, N '-dicyclohexylcarbodiimide (8.98 g , 43.5 mmol) were added successively to a stirred solution of crude alcohol $\mathbf{S 1}$ ($8.02 \mathrm{~g}, 19.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at ambient temperature. After 17 h , the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The filtrate was concentrated and the residue purified by flash chromatography (hexanes/EtOAc 15:1) to give the desired ester as a colorless oil $\left(8.32 \mathrm{~g}, 81 \%\right.$ yield). $[\alpha]_{D}^{20}=+12.4\left(\mathrm{c}=0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{dq}, J=15.5,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{dq}, J=15.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{ddd}, J=10.1,7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.84(\mathrm{~m}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,144.3,135.6,135.6,133.5,129.6,127.6,127.6$, 127.6, 123.0, 74.1, 65.0, 34.9, 31.9, 30.5, 29.6, 29.6, 29.5, 29.5, 29.5, 29.3, 26.7, 25.4, 25.2, 24.7, 22.7, 19.2, 18.0, 14.1 ppm . IR (film): $\tilde{v}=2925,2854,2118,1720,1660,1446,1428,1360,1293$, 1262, 1181, 1112, 1046, 1005, 969, 823, 802, 739, 700, $614 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%)=465(14), 268$ (22), 267 (100), 207 (25), 199 (16), 135 (5), 69 (19). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si}_{1} \mathrm{Na}$: 545.3421; found: 545.3419.
(R)-1-Hydroxytridecan-2-yl (E)-but-2-enoate (S3). Silyl ether $\mathbf{S 2}$ ($5.01 \mathrm{~g}, 9.56 \mathrm{mmol}$) was dissolved
 in THF (50 mL) and the solution cooled to $0^{\circ} \mathrm{C}$. Acetic acid ($1.92 \mathrm{~mL}, 33.5 \mathrm{mmol}$) and a solution of TBAF (1 M in THF, $28.7 \mathrm{~mL}, 28.7 \mathrm{mmol}$) were added slowly. After 5 min stirring at $0^{\circ} \mathrm{C}$, the ice bath was removed and the mixture was allowed to warm to ambient temperature. After 3.5 h , it was diluted with EtOAc (20 mL), poured into sat. NaHCO_{3} solution (40 mL) and the aqueous phase was extracted with EtOAc (3 x 40 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $8: 1$ to $6: 1$ to $4: 1$ to give the desired primary alcohol as a colorless oil $\left(2.42 \mathrm{~g}, 89 \%\right.$ yield). $[\propto]_{D}^{20}=+9.8\left(\mathrm{c}=0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{dq}, J=$ $15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dq}, J=15.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dtd}, J=7.4,6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=$ $12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=12.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65$ $-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 18 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $166.9,145.3,122.6,75.5,65.0,31.9,30.6,29.6,29.5,29.4,29.3,25.3,22.7,18.0,14.1 \mathrm{ppm}$. IR (film): $\tilde{v}=3428,2955,2923,2854,1719,1658,1465,1444,1377,1308,1292,1265,1182,1101,1057$, $1002,968,919,838,722,688 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=285(1), 142$ (9), 100 (8), 87 (12), 69 (100), 55 (6), 41 (12). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}$: 307.2244; found: 307.2244.
(\boldsymbol{R})-1-Oxotridecan-2-yl (\boldsymbol{E})-but-2-enoate (S4). Dess-Martin periodinane ($4.65 \mathrm{~g}, 11.0 \mathrm{mmol}$) and
 $\mathrm{NaHCO}_{3}(2.13 \mathrm{~g}, 25.3 \mathrm{mmol})$ were added successively to a solution of primary alcohol $\mathbf{S 3}(1.20 \mathrm{~g}, 4.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The icebath was removed after 5 min and the white suspension was stirred vigorously at ambient temperature for 4 h . The reaction was then poured into a sat. solution of $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1$, 100 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography ($10 \mathrm{~cm} \mathrm{SiO}_{2}$, hexanes/EtOAc $19: 1$ to $15: 1$ to $12: 1$ to $9: 1$) to give the product as a colorless liquid (661 mg, 55\% yield). $[\propto]_{D}^{20}=+31.0\left(\mathrm{c}=0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.51(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dq}, J=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dq}, J=15.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{ddd}, J=8.3,4.8$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.87-0.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $198.8,165.9,146.5,121.6,78.1,31.9,29.6,29.5,29.3,29.3,29.2,28.8,24.9,22.7,18.1,14.1 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=2923,2854,1721,1657,1465,1444,1377,1292,1258,1175,1102,968,837,722,688$ cm^{-1}. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=337.3(100(\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}))$. HRMS (ESIpos): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 305.2087; found: 305.2085.

2-Oxotridecyl (\boldsymbol{E})-but-2-enoate ($\mathbf{S 1 4}$). DBU ($5.3 \mu \mathrm{~L}, 35 \mu \mathrm{~mol}$) was added to a solution of aldehyde
 S4 $(20.0 \mathrm{mg}, 70.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was stirred for 12 h at rt . The reaction was then quenched by
addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude residue was purified by flash chromatography to yield the rearranged ketone as a colorless oil $(16.1 \mathrm{mg}, 80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05(\mathrm{dq}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dq}, J=15.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 14 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.4,165.6,146.4,121.6,67.8,38.8,31.9,29.6,29.4,29.3,29.2,28.8,24.9,22.7,18.1,14.1$ ppm. IR (film): $\tilde{v}=2953,2922,2853,1722,1656,1468,1444,1377,1294,1258,1175,1101,969$, $720 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=305.2\left(100\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right)$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 305.2087; found: 305.2084.

Morita-Baylis-Hillman product (\boldsymbol{E})-(S5).A flame-dried Young tube was charged with a solution of
 aldehyde $\mathbf{S 4}(150 \mathrm{mg}, 0.531 \mathrm{mmol})$ in DMF (5 mL). Methyldiphenylphosphine $(29.6 \mu \mathrm{~L}, 0.159 \mathrm{mmol})$ was added via syringe and the Young tube was sealed. It was placed in a preheated oil-bath at $120^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 22 h . After cooling to rt , it was poured into $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 4:1 to $3: 1$ to $2: 1$) to give the Baylis-Hillman alcohol (E)-S5 as a white solid ($82 \mathrm{mg}, 55 \%$ yield, $16: 1$ d.r. at C.3) along with the minor isomer (Z)-S5 (see below). $[\propto]_{D}^{20}=+4.9\left(\mathrm{c}=1.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data is given only for the major diastereomer): $\delta=6.95$ ($\mathrm{qd}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=8.1,6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.59-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 16 \mathrm{H}), 0.84-0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data is given only for the major diastereomer): $\delta=169.8,143.4,130.5$, $86.5,70.8,34.0,31.9,29.6,29.6,29.5,29.4,29.3,29.3,24.7,22.7,15.4,14.1 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 3420, 2922, 2853, 1734, 1680, 1465, 1440, 1377, 1332, 1215, 1143, 1207, 980, 814, 722, $610 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%)=282$ (1), 99 (6), 98 (100), 70 (22), 69 (6). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 305.2087; found: 305.2086.

Morita-Baylis-Hillman product (Z)-(S5). Obtained as the minor isomer as a mixture of
 diastereomers at C. 3 ($18.2 \mathrm{mg}, 12 \%$ yield, $18: 1$ d.r.). $[\alpha]_{D}^{20}=+8.0(\mathrm{c}=0.98$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data is given only for the major diastereomer): $\delta=6.61$ (qd, $J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (br s, 1H), 4.19 (ddd, $J=7.8$, $5.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.26-2.16(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~m}, 16 \mathrm{H}), 0.88-0.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data is given only for the major diastereomer): $\delta=168.6,144.0,129.8,85.1,74.1,33.7,31.9,29.6,29.6$, $29.5,29.5,29.4,29.3,29.3,24.9,22.7,14.3,14.1 \mathrm{ppm}$. IR (film): $\tilde{v}=3429,2922,2853,1735,1677$,
$1465,1439,1378,1353,1207,1123,1075,1038,970,865,816,722,663 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=$ 282 (1), 99 (6), 98 (100), 70 (22), 69 (6). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}$: 305.2087; found: 305.2085 .
(3R,4R,5R)-3,4-Dihydroxy-3-((S)-1-hydroxyethyl)-5-undecyldihydrofuran-2(3H)-one (S6). A

flame-dried Schlenck tube was charged with a solution of alcohol (E)-S5 $(16.0 \mathrm{mg}, 56.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ and the solution cooled to $-78{ }^{\circ} \mathrm{C}$. TMEDA $(9.8 \mu \mathrm{~L}, 65 \mu \mathrm{~mol})$ was added via syringe and the resulting solution was stirred for 5 min . A solution of $\mathrm{OsO}_{4}\left(0.6 \mathrm{~m}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 104 \mu \mathrm{~L}, 62.3 \mu \mathrm{~mol}\right)$ was then added dropwise via syringe over the course of 4 min . After 20 min stirring at $-78^{\circ} \mathrm{C}$, the cooling bath was removed and the reaction mixture concentrated by applying an Ar flow and finally dried under high vacuum. The residue was redissolved in THF $(0.7 \mathrm{~mL})$ and the solution treated with sat. $\mathrm{NaHSO}_{3}{ }^{[14]}(0.7 \mathrm{~mL})$ for 36 h under vigorous stirring. The biphasic mixture was then diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc (3 x 4 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 3:2) to give the desired triol as a white solid ($13.2 \mathrm{mg}, 74 \%$) . $[\alpha]_{D}^{20}=+36.8(\mathrm{c}=0.58, \mathrm{DMSO}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left[\mathrm{D}_{6}\right]$-DMSO) : $\delta=5.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{td}, J=7.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{qd}, J=6.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dtd}, J=9.5,7.4,6.4,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 16 \mathrm{H}), 0.85(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, [D 6$]$-DMSO): $\delta=174.1,81.4,75.9,72.4,67.1,32.3,31.3$, 29.1, 29.1, 29.0, 29.0, 28.9, 28.8, 25.0, 22.1, 16.7, 14.0 ppm . IR (film): $\tilde{v}=3400,2955,2922,2853$, $1762,1465,1377,1345,1270,1212,1108,1078,1001,967,895,798,746,721,700 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=339.3(100(\mathrm{M}+\mathrm{Na}))$, 655.2 (45 (2M+Na)). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}$: 339.2142; found: 339.2142 .
(\boldsymbol{R})-1-Bromotridecan-2-yl (E)-but-2-enoate (S7). Alcohol S3 (362 mg, 1.27 mmol) was dissolved in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.4 \mathrm{~mL})$ and the resulting solution cooled to $0^{\circ} \mathrm{C}$. Triphenylphosphine ($401 \mathrm{mg}, 1.53 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(464 \mathrm{mg}, 1.40 \mathrm{mmol})$ were added as solids at $0{ }^{\circ} \mathrm{C}$. The ice bath was removed and the orange solution allowed to warm to ambient temperature and stirred for further 30 min . Hexane (14 mL) was added and the suspension filtered through Celite ${ }^{\circledR}$ (10 mL rinse with hexanes). The filtrate was washed with aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (5%, 10 mL) and the aqueous washings were extracted with hexanes/EtOAc (9:1, $2 \times 10 \mathrm{~mL}$). The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The brown residue was purified by flash chromatography (hexanes/EtOAc $29: 1$ to $24: 1$) to give the desired alkyl bromide as a colorless oil ($273 \mathrm{mg}, 62 \%$ yield). $[\propto]_{D}^{20}=+11.7\left(\mathrm{c}=0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.99(\mathrm{dq}, J=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dq}, J=15.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{tt}, J=6.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}$, $J=10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}$,
$2 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 18 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8$, $145.4,122.4,72.0,34.4,32.5,31.9,29.6,29.5,29.4,29.4,29.3,29.3,25.0,22.7,18.0,14.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2922,2853,1721,1658,1465,1443,1293,1259,1172,1101,1017,968,837 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z(\%)=349(0.3), 347(0.3), 267(1), 180(4), 111$ (5), 97 (9), 87 (39), 69 (100), 41 (25). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{BrNa}$: 369.1400; found: 369.1396.
(R)-1-Hydroxytridecan-2-yl (Z)-2-bromobut-2-enoate (S8). Alcohol S3 (117 mg, 0.411 mmol) was
 dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and the resulting solution cooled to $0^{\circ} \mathrm{C}$. Bromine $(31.6 \mu \mathrm{~L}, 0.617 \mathrm{mmol})$ was added dropwise via syringe. After 45 min at $0^{\circ} \mathrm{C}$, TLC analysis indicated full consumption of the s.m. and all volatiles were removed under vacuum. The residue was redissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, before triethylamine $(68.8 \mu \mathrm{~L}, 0.494 \mathrm{mmol})$ was added at ambient temperature. After stirring for 38 h , the white precipitate formed was filtered off. The filtrate was concentrated and purified by flash chromatography (hexanes/EtOAc $12: 1$ to $9: 1$ to $7: 1$) to give the title compound as a pale-yellow oil $(86 \mathrm{mg}, 58 \%$ yield). Due to the unstable nature (1,2-Acyl shift), it was immediately engaged in the next step. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dtd}, J=7.5,6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.71$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. IR (film): $\tilde{v}=3428,2923,2853$, $1715,1630,1465,1376,1335,1249,1227,1108,1036,953,845,739 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=$ $467.1(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{BrNa}$: 465.9611; found: 465.0611.
(R)-1-Oxotridecan-2-yl (Z)-2-bromobut-2-enoate (S9). Dess-Martin periodinane (298 mg,
 $0.702 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(157 \mathrm{mg}, 1.88 \mathrm{mmol})$ were added to a solution of primary alcohol $\mathbf{S 8}(85.1 \mathrm{mg}, 0.234 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , the ice bath was removed and the white suspension allowed to warm to ambient temperature under vigorous stirring. After 100 min , the reaction mixture was poured into sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}$ solution $(1: 1,8 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 9:1) to give a colorless oil (43 mg , 51% yield, 90% purity $) .[\propto]_{D}^{20}=+20.0\left(\mathrm{c}=0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.51(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 16 \mathrm{H}), 0.86-0.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=197.8,162.0,143.0,116.4,79.9,31.9,29.6,29.4,29.3,29.3,29.2,28.6$, $24.8,22.7,18.0,14.1 \mathrm{ppm}$. IR (film): $\tilde{v}=2923,2853,1726,1629,1465,1376,1245,1107,1074$, $1035,944,839,775,737 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=361$ (1), 363 (1), 331 (0.5), 183 (8), 167 (16), 165 (11), 149 (100), 137 (99), 119 (9), 98 (36), 83 (7), 69 (10), 68 (9), 57 (12, 55 (14), 43 (19), 41 (14), 39 (12). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{BrNa}$: 383.1192; found: 383.1192 .

Alcohol 72d. Ammonium fluoride ($328 \mathrm{mg}, 8.86 \mathrm{mmol}$) was added as a solid to a stirred solution of
 diene $72(85.0 \mathrm{mg}, 80.5 \mu \mathrm{~mol})$ in hexafluoroisopropanol $(8.5 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $15^{\circ} \mathrm{C}$ after 12 h and stirred at this temperature for further 36 h . The reaction was then quenched by pouring it into sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(25 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x} 15 \mathrm{~mL})$ and EtOAc (3 x 15 mL) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 6:1) to give the desired primary alcohol as a white foam ($43.0 \mathrm{mg}, 65 \%$ yield $) .[\propto]_{D}^{20}=+11.8\left(\mathrm{c}=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.69-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.1$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{dt}, J=10.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{ddd}, J=12.4,6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=7.9,5.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, J=7.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, J=10.7,5.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=6.7,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51(\mathrm{dd}, J=12.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.36-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dt}, J=13.0,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddt}, J=12.4,4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddt}, J=12.6,4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{ddd}, J=12.7,8.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 2 \mathrm{H})$, $1.01(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,146.5,140.4,136.0,134.3,134.0,130.0,129.6,129.6,127.6$, $127.5,127.5,126.4,124.1,122.7,81.2,80.1,73.7,73.6,73.2,72.1,68.8,65.5,42.8,41.9,41.7,38.5$, $35.3,34.4,33.9,33.6,30.1,27.1,25.8,20.1,19.5,18.1,15.2,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3466,2955$, $2929,2856,1718,1656,1472,1462,1428,1374,1319,1256,1177,1155,1107,1069,961,836,775$, $740,703,609 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=839.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 839.4709; found: 839.4703

Aldehyde 73. Dess-Martin periodinane ($46.8 \mathrm{mg}, 0.110 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(25.3 \mathrm{mg}, 0.301 \mathrm{mmol})$
 were added as solids to a solution of alcohol 72 d ($41.0 \mathrm{mg}, 50.2 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed 5 min after the addition and the reaction mixture allowed to warm to ambient temperature while stirring vigorously. After 2.5 h , the reaction mixture was quenched by pouring it into sat. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution ($1: 1,15 \mathrm{~mL}$) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 12 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (8 cm SiO 2 , hexanes/EtOAc 9:1) keeping the contact time with silica gel as short as possible to yield the desired aldehyde as a white foam $\left(34.3 \mathrm{mg}, 84 \%\right.$ yield). $[\propto]_{D}^{20}=+15.6$ ($\mathrm{c}=0.98$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=9.22(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.09$
(ddd, $J=15.3,8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J$ $=15.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=10.7$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=9.4,6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.14(\mathrm{td}, J=9.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{td}, J=10.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dt}, J=15.3$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dt}, J=15.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.99(\mathrm{~m}, 12 \mathrm{H}), 0.70-0.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $6 \mathrm{H}) . \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=197.3,165.6,147.1,140.3,136.5,136.4,135.0,134.5$, $130.4,129.9,129.9,127.9,127.9,126.9,125.2,122.7,81.2,81.0,76.1,73.7,73.5,72.8,69.0,43.5$, $42.4,42.0,38.6,36.3,35.2,33.7,32.6,30.7,27.5,26.0,20.1,19.9,18.2,14.7,-4.3 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 2955, 2928, 2956, 1722, 1655, 1471, 1462, 1428, 1257, 1171, 1106, 1052, 1005, 982, 941, 836, 775, $738,702,609 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=837.5(100(\mathrm{M}+\mathrm{Na})$). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 837.4552; found: 837.4550.

Alcohol S10. Ammonium fluoride ($54.2 \mathrm{mg}, 1.46 \mathrm{mmol}$) was added to a solution of diyne 66
 $(16.0 \mathrm{mg}, 0.146 \mathrm{mmol})$ in $1,1,1,3,3,3$-hexafluro-2-propanol $(1.5 \mathrm{~mL})$ and the resulting solution stirred for 40 h at ambient temperature. The reaction mixture was then poured into sat. aq. NaHCO_{3} solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $15: 1$ to $9: 1$ to $7: 15: 1$) to yield the title compound as a white foam ($8.8 \mathrm{mg}, 70 \%$). $[\propto]_{D}^{20}=-16.4$ $\left(\mathrm{c}=0.86, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{ddq}, J=15.9,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{ddt}, J=8.4,4.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=$ $7.1,6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{tt}, J=10.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{dd}, J=12.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dddd, $J=11.4,6.6,5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.2$, $7.2,5.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{ddd}, J=12.4$, $8.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.26(\mathrm{ddd}, J=13.4,7.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.96$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=166.6,148.5,145.9,136.0,135.9,134.1,133.9,129.5,129.4,127.5,127.3,122.9,108.2$, $84.5,81.7,81.0,79.3,78.3,74.0,73.3,73.1,71.8,69.3,68.6,65.3,42.3,41.4,41.3,38.8,35.2,34.8$, $34.4,33.4,27.1,25.8,20.9,19.8,19.5,18.1,14.7,4.2,-4.5,-4.5 \mathrm{ppm}$. IR (film): $\tilde{v}=3466,2954$, $2929,2856,1718,1656,1472,1462,1428,1377,1256,1219,1177,1109,1069,1005,837,776,739$, $703,611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=877.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 877.4865; found: 877.4860.

Aldehyde S11. Dess-Martin periodinane $(9.8 \mathrm{mg}, 23 \mu \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(5.2 \mathrm{mg}, 62 \mu \mathrm{~mol})$ were
 added as solids to a stirred solution of alcohol $\mathbf{S 1 0}(6.6 \mathrm{mg}, 7.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ at room temperature. The resulting white suspension was stirred vigorously for 2.5 h . The reaction mixture was then poured into sat. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution $(1: 1,6 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 x 5 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (8 cm SiO 2 , hexanes/EtOAc 12:1), keeping the contact time with silica gel as short as possible, to give the rather unstable aldehyde as a colorless oil $(5.5 \mathrm{mg}, 84 \%$ yield $) .[\propto]_{D}^{20}=$ $-11.7\left(\mathrm{c}=0.48, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.39(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}$, 4 H), $7.39-7.35$ (m, 2H), $7.33-7.29$ (m, 4H), 6.91 (dt, $J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (ddd, $J=15.9,8.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dqd}, J=15.9,2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=9.9$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=8.3,6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{tt}, J=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36 (dddd, $J=11.8,7.0,5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dddd}, J=11.2,7.3,5.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dtd}, J=$ $15.0,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dt}, J=12.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-$ $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dt}, J=13.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=198.3,165.5,148.4,147.0,135.9,133.8,133.5,129.6,129.5,127.6,127.3,121.9,108.2,84.4,81.5$, $80.6,79.4,78.3,75.5,73.9,73.3,71.0,69.5,68.6,42.3,41.4,41.4,38.9,35.2,34.7,33.4,31.8,27.1$, $25.8,20.9,19.7,19.5,18.1,14.7,4.2,-4.5,-4.5 . p p m$. IR (film): $\tilde{v}=2955,2929,2856,1725,1655$, 1472, 1462, 1428, 1376, 1258, 1171, 1110, 1060, 1006, 962, 837, 776, 740, 703, $611 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESIpos) $m / z(\%)=875.5(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 875.4711 ; found: 875.4709.

Baylis-Hillman alcohol S12. A flame-dried Young tube was charged with a solution of aldehyde S11
 $(1.2 \mathrm{mg}, 1.41 \mu \mathrm{~mol})$ in DMF $(30 \mu \mathrm{~L})$ followed by a solution of dimethylphenylphosphine (0.05 M in DMF, $8.4 \mu \mathrm{~L}, 0.42 \mu \mathrm{~mol}$). The Young tube was sealed and place in a preheated oil bath $\left(90^{\circ} \mathrm{C}\right)$. The reaction mixture was stirred at this temperature for 8 h before being cooled to room temperature. It was then poured into sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(3 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 9.1 to $8: 1$ to $7: 1$ to $6: 1$ to $5: 1$) to give alcohol 250 as a white amorphous solid $\left(0.45 \mathrm{mg}, 38 \%\right.$ yield, $6: 1 \mathrm{E} / \mathrm{Z}, \sim 90 \%$ pure). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): see table $14 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): see table 14. IR (film): $\tilde{v}=3461,2956$, 2931, 2855, 1724, 1658, 1472, 1463, 1428, 1376, 1256, 1172, 1111, 1060, 1005, 960, 835, 778, 742,
$706 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=875.5(100(\mathrm{M}+\mathrm{Na})$). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 875.4711; found: 875.4707.

Baylis-Hillman alcohol ((24R)-74, major isomer). A flame-dried Young-tube was charged with a
 solution of aldehyde 73 ($34.3 \mathrm{mg}, 42.1 \mu \mathrm{~mol}$) in DMF (1.1 mL). A solution of dimethylphenylphosphine (0.2 M in DMF, $63.1 \mu \mathrm{~L}, 12.6 \mu \mathrm{~mol}$) was added via syringe, the Young tube was sealed, placed in a preheated oil bath $\left(90^{\circ} \mathrm{C}\right)$ and the reaction mixture was stirred for 60 h at this temperature. After cooling to ambient temperature, the reaction mixture was poured into sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 4 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The pale yellow residue was purified by flash chromatography (hexanes/EtoAc $12: 1$ to $9: 1$ to $8: 1$ to $7: 1$) to yield alcohol ($24 R$)-74 ($11.7 \mathrm{mg}, 34 \%$ yield) along with its isomer ($24 S$)-74 (see below) and elimination product 75 (see below). $[\propto]_{D}^{20}=+47\left(\mathrm{c}=0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, CDCl_{3}): see table $14 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 14 . IR (film): $\tilde{v}=3426,2955,2930$, 2894, 2857, 1760, 1744, 1683, 1462, 1428, 1376, 1362, 1331, 1252, 1195, 1111, 1077, 1029, 1006, 945, 856, 836, 775, 739, $704 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=837.5(100(\mathrm{M}+\mathrm{Na})$). HRMS (ESIpos): calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: m / z : 837.4552; found: 837.4549.

Baylis-Hillman alcohol ((24S)-74, minor isomer). Obtained from the reaction described above as the
 minor isomer ($6.4 \mathrm{mg}, 19 \%$ yield). $[\propto]_{D}^{20}=+46.1\left(\mathrm{c}=0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=$ see table $15 .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ see table 15. IR (film): $\tilde{v}=3417,2955,2928,2856,2856,1760,1742,1682$, $1462,1428,1376,1252,1194,1110,1075,1006,945,856,836,775,739$, $703 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=837.5(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 837.4552; found: 837.4551.

Elimination product 75. Obtained from the reaction described above as an unpolar by-product
 $(1.6 \mathrm{mg}, 5 \%$ yield $) .[\propto]_{D}^{20}=+27.8\left(\mathrm{c}=0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.40(\mathrm{dd}, J=10.6$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{td}, J=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}$, $J=8.3,5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.17-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J$ $=14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=13.0,10.7$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=12.4,7.6$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddt}, J=12.4,4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddt}, J=12.5,4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dt}, J=$
$12.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{ddd}, J=13.8,9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.13(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,156.9,141.5,135.9,135.9,133.8,133.7,133.6$, $130.9,130.4,129.7,129.6,127.6,127.5,126.5,123.3,103.6,81.6,79.7,74.4,73.5,69.6,68.7,42.3$, $42.1,41.5,36.5,35.6,34.4,33.7,32.3,29.9,27.0,25.8,19.6,19.4,18.1,15.5,-4.5,-4.5 \mathrm{ppm} . \mathrm{IR}$ (film): $\tilde{v}=2955,2928,2856,1782,1655,1471,1462,1428,1376,1324,1254,1151,1105,1081$, 1006, 927, 867, 837, 823, 776, 740, $703 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%)=796$ (14), 741 (16), 740 (34), 739 (58), 711 (29), 607 (22), 540 (38), 483 (17), 408 (51), 295 (38), 239 (25), 217 (26), 199 (63), 197 (44), 135 (100), 131 (18), 93 (20), 73 (32). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}$: 819.4447; found: 819.4443.

Table 13: Assignment of the ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data for the anti-Baylis-Hillman alcohol S12.*

atom n°	${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, 150 MHz) δ / ppm
	δ / ppm	m	J/Hz	COSY	NOESY	
1	-	-	-	-	-	168.2
2	-	-	-	-	-	134.3
3	6.95	ddd	9.8, 7.1, 2.0	4ab, 5, 6b, 24	4a(b)	139.8
4a	2.33	ddd	14.0, 9.8, 4.0	3, 4b, 5, 24	4b, 5, 24	
4b	1.95	m	-	3, 4a, 5	4a, 5	34.9
5	2.95	dm	11.5	4ab, 6ab	4ab, 6a, 7, 9	73.7
6a	1.53	m	-	5, 6b, 7	6 b	40.3
6b	1.28	m	-	5, 6a, 7	5, 6a, 7	40.3
7	3.50	dddd	10.5, 10.3, 5.0, 4.9	$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6a, 8a, 9	68.9
8 a	1.60	ddt	12.9, 4.4, 2.1	7, 8b, 9	7, 8b, 9, 11	
8b	0.97	m	-	7, 8a, 9	8 a	41.1
9	3.09	dtd	11.2, 6.7, 1.2	8ab, 10ab	$5,7,8 a, 10 a,(11), 25$	74.2
10a	1.51	t	11.3	9, 10b, 11	9, 10b, 11	420
10b	1.08	m	-	9, 10a, 11	9, 10a, 11, (25)	42.0
11	2.16	m	-	10ab, 12, 25	8a, (9), 10a(b), (12), 13, 25	33.8
12	5.96	dd	15.8, 8.3	11, 13	10a, (11), 25	147.9
13	5.52	dqd	15.9, 2.2, 0.9	(11), 12, 14"	11, (25)	109.6
14	-	-	-	-	-	78.9
14^{\prime}	-	-	-	-	-	84.9
14"	1.63	d	2.3	13	-	3.9
15'	1.70	t	2.7	16ab	-	70.0
15	-	-	-	-	-	81.7
16a	2.03	ddd	16.7, 5.6, 2.7	16b, 17	16b, 17, 18	21.1
16b	1.93	m	-	16a, 17	16a, 17, 26	21.1
17	3.64	ddd	7.8, 7.1, 5.6	16ab, 18	16ab, 18	79.7
18	1.93	m	-	17, 19a, 26	17, 19a, 26	35.6
19a	1.53	m	-	18, 19b, 20	18, 19b, 20, 21	
19b	1.06	m	-	18, 19a, 20	19a, (22b), 26	35.5
20	3.68	dt	8.9, 6.7	19a, 21	18, 19ab, 21, 22b	81.7
21	4.18	ddd	7.2, 7.0, 4.2	20, 22ab	19a, 20, 22b, 23, 24	72.8
22a	1.71	m	-	21, 22b, 23	20, 21, 22b, 23, 24	
22b	1.71	m	-	21, 22a, 23	20, 21, 22a, 23, 24	39.1
23	4.82	ddd	9.0, 5.0, 2.4	22ab, 24	(20), 21, 22b, 24	82.3
24	4.34	dd	2.4, 2.1	23, OH	4ab, (21), 22b, 23	70.9
25	0.78	d	6.6	11	9, 10a(b), 11, 12, (13)	20.0
26	0.66	d	7.0	18	16a, 18, 19, (20)	14.6
OH	3.35	brs	-	23	24	-

* The signals of the TBS \& TBDPS group are not listed and appear as follows: ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=7.93-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=136.5,134.8,134.5,129.9,129.7,127.9,27.5,26.0,-4.4$ ppm.

Table 14: Assignment of the ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data for the anti-Baylis-Hillman alcohol (24R)-74.*

atom n°	${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$	
	δ / ppm	m	J / Hz	COSY	NOESY	δ / ppm	HMBC
1	-	-	-	-	-	168.7	-
2	-	-	-	-	-	132.8	-
3	6.85	ddd	9.7, 7.0, 2.1	4 ab	4ab, 5, 6a, (24), (25)	142.3	1, (5), 24
4 a	2.63	ddd	14.0, 9.7, 8.3	3, 4b, (5)	3, 4b, 5, (6a), 24		2, 3, 5
4b	2.39	ddd	14.0, 7.1, 2.4	3, 4a, 5	3, 4a, 5, 24	35.0	2, 3, 5
5	3.45	dddd	11.1, 8.5, 2.0, 1.7	4(a)b, 6a	3, 4ab, 6b, 7, 9	74.3	
6a	1.29	m		5,6b, 7	3, (4a), 6b, 8a		5,7
6b	1.83	ddt	12.5, 4.7, 1.7	$6 \mathrm{a}, 7$	5, 6a, 7	40.7	7,8
7	3.75	m	-	$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6b, 8b, 9, 25	68.6	
8 a	1.16	m	-	7,8b, 9	$6 \mathrm{a}, 8 \mathrm{~b}$		7, 9
8 b	1.68	ddt	12.7, 4.7, 1.7	7, 8a, (9)	7, 8a, 9	41.8	6,7
9	3.29	tt	10.9, 2.0	$8 \mathrm{a}(\mathrm{b}), 10 \mathrm{~b}$	5, 7, 8b, 10b, 11, 25	73.1	
10a	1.19	m	-	10b, 11	9, 10b, 11, 12		8,12
10b	1.47	m	-	9, 10a	10a, 11, 12, 13	43.7	9
11	2.31	m	-	10ab, 12, 25	9, 10a, 12, 13, 24, 25, OH	32.8	
12	5.45	dd	15.1, 8.3	11, 13	10ab, (11), 14, 25	141.0	11, 14, 25
13	6.34	dd	15.2, 10.9	12, 14	10a, 11, 16a, (17), 22a, 25	125.0	11
14	5.93	dd	10.8, 10.8	13, 15	12, 15	130.5	12, 16
15	5.28	dt	10.2, 6.6	14, 16ab	14, 16ab, 17, (26)	127.0	13
16a	2.00	dddd	14.5, 6.6, 3.1, 0.5	15, 16b, 17	15, 16b, 17, 26		14, 15
16b	2.36	m	-	15, 16a, 17	13, 15, 17, 16a, 23, 26	30.4	14, 15, 17
17	3.72	ddd	8.7, 7.3, 3.0	16ab, 18	(13), 15, 16ab, 18, 20, 26	81.5	15
18	2.20	ddq	7.4, 7.3, 7.3	17, 19ab, 26	17, 19ab, 20, 26	35.4	19, (20), 26
19a	1.48	m	-	18, 19b, 20	18, 19b, 21, 23		17, 18, (20), 26
19b	1.92	ddd	12.9, 7.7, 7.0	18, 19a, 20	18, 19a, 20, 22a	33.7	18, 20, (21), 26
20	3.83	ddd	9.3, 6.6, 4.9	19ab, 21	17, 18, 19b, 21	80.0	(18), 22
21	4.34	m	-	20, 22ab	19b, 20, 22a	69.0	19, 20
22a	1.74	ddd	14.2, 7.5, 5.9	21, 22b, 23	19b, 21, 22b, 23, 24		20, 2123,24
22b	1.93	ddd	14.4, 8.2, 6.0	21, 22a, 23	(11), 21, 22a, 23, 24	36.0	(20), (21), 23, 24
23	4.54	ddd	8.7, 5.9, 3.5	22ab, 24	16b, 19, 22, 24, 26, OH	82.0	
24	4.33	ddd	-	23, OH	(3), 4ab, 11, (13), 22, 23	71.0	
25	0.86	d	6.4	11	(3), 7, 9, 11, 12, (13)	18.6	10, 11, 12
26	0.95	d	7.1	18	15, 16, 17, 18, 19b, 22, 23	15.7	17, 18, 19
OH	2.84	br d	4.4	23	11, 23, 24	-	-

*The signals of the TBS \& TBDPS group are not listed and appear as follows: ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.0,133.8,133.7,129.7,129.7,127.6,127.5,27.1$, $25.8,19.5,18.1,-4.5,-4.6 \mathrm{ppm}$

Table 15: Assignment of the ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data for the syn-Baylis-Hillman alcohol (24S)-74.*

$\begin{aligned} & \text { atom } \\ & \mathrm{n}^{\circ} \end{aligned}$	${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$	
	δ / ppm	m	J/Hz	COSY	NOESY	δ / ppm	HMBC
1	-	-	-		-	168.7	-
2	-	-	-	-	-	134.8	-
3	6.79	ddd	11.3, 6.0, 1.6	4 ab	4ab, 5	140.0	1,24
4a	2.46	m	-	3, 4b, (5)	3, 5, 24, OH		2, 3, 5
4b	2.46	m	-	3, 4a, 5	3, 5, 24 , OH	36.7	2,3,5
5	3.38	dddd	11.3, 11.3, 3.5, 1.8	4(a)b, 6a	3, 4ab, 6b, 7, 9	72.8	
6a	1.31	ddd	11.9, 11.7, 11.2	5, 6b, 7	6 b		5
6b	1.91	m	-	$6 \mathrm{a}, 7$	5, 6a, 7		
7	3.79	dddd	10.6, 10.6, 4.8, 4.8	$6 \mathrm{ab}, 8 \mathrm{ab}$	$5,6 b, 8 b, 9$	68.3	
8 a	1.24	ddd	12.5, 11.4, 11.3	7, 8b, 9	8 b		9
8 b	1.69	ddt	12.8, 4.8, 1.7	7, 8a, (9)	7, 8a, 9, 10b	41.9	7
9	3.29	tt	11.2, 2.0	8a(b), 10b	5, 7, 8b, 10b, 25	73.7	
10a	1.53	m	-	10b, 11	10b, (11)		
10b	1.15	ddd	14.2, 12.4, 1.1	9, 10a	8b, 9, 10a, 25		
11	2.39	m	-	10b, 12, 25	13, $25, \mathrm{OH}$	31.3	
12	5.39	dd	15.2, 7.6	11, 13	(13), 14, 25	141.2	11, 14, 25
13	6.35	dd	15.2, 10.9	12, 14	11, 16a, (OH)	125.1	
14	5.92	dd	10.9, 10.9	13, 15	12, 15	130.3	
15	5.17	td	10.9, 5.1	14, 16ab	14, 16b, 17	127.6	
16a	2.33	m	-	15, 16b, 17	13, 16b	31.2	
16b	1.92	dddd	14.6, 11.1, 2.3, 2.2	15, 16a, 17	16a, 17, 26		14, 15
17	3.85	m		16ab, 18	15, 16b, 18	81.5	15
18	2.24	ddq	10.8, 7.4, 7.1	17, 19b, 26	17, 19a, 20, 26	35.7	
19a	1.86	ddd	12.6, 6.4, 6.3	19b, 20	18, 19b, 20	33.2	17, 18, 21
19b	1.51	m	-	18, 19a, 20	19a, 26		
20	3.88	m	-	19ab, 21	19a, 21	80.0	
21	4.49	ddd	11.6, 4.8, 1.9	20, 22b	20, 22a	69.6	
22a	2.35	m	-	22b, 23	21, 22b		23
22b	1.83	dd	13.2, 0.5	21, 22a	22a, 23, (24)	29.7	21
23	4.51	ddd	12.4, 5.3, 1.6	22a, 24	22b, 24	78.5	
24	4.72	dd	5.3, 1.3	(23), OH	$4 \mathrm{ab}, 23, \mathrm{OH}$	65.8	1,23
25	0.80	d	6.6	11	9, 10b, 11, 12	18.1	10, 11, 12
26	0.98	d	7.0	18	16b, 18	15.2	17, 18, 19
OH	4.23	s	-	(24)	4ab, 11, (13), 24	-	2, 23, 24

*The signals of the TBS \& TBDPS group are not listed and appear as follows: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.9,135.9$ 133.9, 133.9, 129.7, 129.7, 127.5, 27.2, 27.1, 25.8, 19.7, 18.0, -4.5, -4.6 ppm .

Triol 76. A flame-dried Schlenck tube was charged with a solution of alcohol (24R)-74 (10.0 mg ,
 $12.3 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ and the solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of TMEDA (0.2 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70.5 \mu \mathrm{~L}, 14.1 \mu \mathrm{~mol}$) was introduced and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 5 min . A solution of osmium tetroxide (0.12 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 103 \mu \mathrm{~L}, 12.4 \mu \mathrm{~mol}$) was added dropwise via syringe through a septum over 3 min . After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , the mixture was allowed to warm to rt, the volatiles were removed by first applying an Ar flow and the residue was dried under high vacuum. The residue was redissolved in THF (0.6 mL) and the solution treated with aq. sat. NaHSO_{3} solution (0.6 mL) for 23 h under vigorous stirring. The resulting emulsion was diluted with $\mathrm{EtOAc} / \mathrm{NaCl}$ solution (1:1, 6 mL) and the layers were separated. The aqueous phase was extracted with EtoAc ($3 \times 4 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The pale red residue was purified by flash chromatography (hexanes/EtOAc $5: 1$) to afford the triol as a white foam (6.8 mg , $65 \%) \cdot[\propto]_{D}^{20}=+13.6\left(\mathrm{c}=0.59, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.42-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.16(\mathrm{ddt}, J=15.2,10.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{tt}, J=10.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=10.8,9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=8.5,4.8$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, J=10.5,7.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.84$ (ddd, $J=8.2,7.6,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75$ (dddd, $J=10.7,10.7,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (br s, 1H), 3.59 (dd, $J=9.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{ddt}, J=11.3,10.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{ddt}, J=11.9,9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{dtd}, J=15.4,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (ddd, $J=14.5,8.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{ddd}, J=14.2,10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddt}, J=12.5,4.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=12.5,4.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{ddd}, J=13.9,10.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85$ (s, 9H), 0.03 ($\mathrm{s}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.8,140.7,135.9,133.7,133.6,129.8$, $129.8,127.6,126.7,123.9,80.9,80.2,79.9,74.4,74.1,73.2,72.9,71.3,69.1,68.6,44.0,42.2,41.7$, $36.4,35.8,34.7,33.6,33.1,31.0,27.1,25.8,19.5,19.3,18.1,14.9,-4.5,-4.5 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=$ 3477, 2956, 2930, 2857, 1763, 1472, 1462, 1428, 1376, 1362, 1255, 11943, 1111, 1078, 1031, 1006, 981, 922, 857, 837, 776, 739, 703, $611 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=871.59(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}$: 871.4607; found: 871.4607.

Key NOE contacts of the γ-lactone observed for triol 76.

2,3,24-epi-Deacylmandelalide D (77). A teflon vial was charged with a solution of triol 76 (5.0 mg ,
 $5.9 \mu \mathrm{~mol})$ in THF (0.5 mL) and pyridine (0.5 mL) and the mixture cooled to $0^{\circ} \mathrm{C}$. HF-pyr $(500 \mu \mathrm{~L})$ was then added slowly via an Eppendorf pipette. After stirring 5 min at $0^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to ambient temperature and stirred for further 24 h . The reaction was then quenched by pouring it into pH 7.2 buffer $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}, 5 \mathrm{~mL}\right)$ and the buffered aqueous phase was extracted with $\mathrm{EtOAc} / \mathrm{EtOH}$ (9:1, $4 \times 6 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93: 7\right.$ to $92: 8$ to $91: 9$ to $\left.90: 10\right)$ to yield the desired pentaol as a white solid ($2.1 \mathrm{mg}, 72 \%$ yield). $[\alpha]_{D}^{27}=-2.0(\mathrm{c}=0.34, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): see table $16 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): see table 16. IR (film): $\tilde{v}=3379$, 2957, 2924, 2873, 2856, 1763, 1650, 1455, 1375, 1261, 1375, 1214, 1109, 1063, 1036, 998, 948, 883, $732 \mathrm{~cm}^{-1} . \mathrm{MS}($ ESIpos $) m / z(\%)=519.20(100(\mathrm{M}+\mathrm{Na})), 1016.37(32(2 \mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{Na}$: 519.2565; found: 519.2564.

Triol 78. A flame-dried Schlenck tube was charged with a solution of alcohol (24S)-74 (6.0 mg ,
 $7.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the resulting mixture cooled to $-78^{\circ} \mathrm{C}$. A solution of TMEDA (0.2 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 42.3 \mu \mathrm{~L}, 8.5 \mu \mathrm{~mol}$) was introduced and the reaction mixture stirred 5 min at $-78^{\circ} \mathrm{C}$. A solution of osmium tetroxide (0.12 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 61.3 \mu \mathrm{~L}, 7.4 \mu \mathrm{~mol}$) was added dropwise via syringe through a septum over 3 min . After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , the cooling bath was removed and the volatiles were removed by first applying an Ar flow. The residue was finally dried under high vacuum before it was redissolved in THF $(0.4 \mathrm{~mL})$ and the solution treated with aq. sat. $\mathrm{NaHSO}_{3}(0.4 \mathrm{~mL})$ for 23 h under vigorous stirring. The resulting emulsion was diluted with $\mathrm{EtOAc} / \mathrm{NaCl}$ solution (1:1, 6 mL) and the layers were separated. The aqueous phase was further extracted with EtoAc ($3 \times 4 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The pale red residue was purified by flash chromatography (hexanes/EtOAc 7:1 to 6:1) to afford the triol as a white foam (4.9 mg, 78%). $[\propto]_{D}^{20}=$ $+30.2\left(\mathrm{c}=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.30$ (ddt, $J=15.3,10.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (ddt, $J=10.8,10.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dd, $J=15.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddd}, J=10.8,8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{ddt}, J=11.2,3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.34 (ddd, $J=10.8,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}$, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{tt}, J=10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{tt}, J=11.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.18$ (dddd, $J=16.3$, $6.8,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{ddt}, J=15.8,11.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.20$ (dd, $J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{dd}, J=13.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$
$(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.5,140.2$, $135.9,135.9,133.9,133.4,129.7,129.7,129.0,127.6,127.5,127.1,125.1,81.5,80.1,79.1,78.7$, $74.9,74.4,74.1,69.7,68.2,68.2,44.1,42.1,41.9,38.9,36.5,32.5,32.5,32.4,29.5,27.1,25.8,19.6$, $19.4,18.1,14.4,-4.6,-4.6 \mathrm{ppm}$. IR (film): $\tilde{v}=3374,2956,2929,2856,1759,1471,1461,1427,1375$, $1362,1332,1259,1203,1107,1069,979,856,836,801,775,737,702 \mathrm{~cm}^{-1}$. MS (ESIpos) $\mathrm{m} / \mathrm{z}(\%)=$ $871.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}_{2} \mathrm{Na}$: 871.4607; found: 871.4606.

Key NOE contacts of the γ-lactone observed for Triol 78.

Table 16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2,3,24-epi-deacylmandelalide D (77).

$\begin{aligned} & \text { atom } \\ & \mathrm{n}^{\circ} \end{aligned}$	${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 600 \mathrm{MHz}$)					${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 600 MHz) δ / ppm
	δ / ppm	m	J/Hz	COSY	NOESY	
1	-	-			-	177.9
2	-	-			-	76.9
3	3.92	m	-	4ab, 5	-	73.3
4 a	1.74	ddd	14.9, 8.5, 2.3	3, 4b, 5	4b, 5, 6a	
4b	1.96	m	14.9, 9.8, 2.2	3, 4a, 5	3, 4a	38.0
5	3.58	dddd	11.4, 10.0, 1.9, 1.8	$4 \mathrm{ab}, 6 \mathrm{ab}$	$3,4 \mathrm{a}, 6 \mathrm{~b}, 7,9$	74.2
6a	1.19	dt	12.0, 11.3	5, 6b, 7	(4b), 6b	
6b	1.89	ddt	12.1, 4.2, 1.8	5, 6a, 7	(4a), 6a, 5, 7	42.3
7	3.78	dddd	11.0, 10.9, 4.8, 4.6	$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6b, 8b, 9	68.8
8 a	1.11	dt	12.1, 11.3	7, 8b, 9	8b, (10a)	
8 b	1.88	dddd	12.3, 4.7, 1.7, 1.7	7, 8a, 9	7, 8a, 9, (10b)	
9	3.41	ddt	11.1, 10.1, 2.1	8ab, 10ab	5, 7, 8b, 10a, (11), 25	74.2
10a	1.35	ddd	13.7, 10.7, 2.9	10b, 11	(8b), 9, 10b, (11), 25	
10b	1.54	ddd	13.8, 10.1, 3.8	10a, 11	8a, 10a, 11	45.3
11	2.52	m	-	10ab, 12, 25	(9), (10b), 12, 13, 25	34.9
12	5.55	dd	15.2, 8.3	11, 13	(10ab), (11), 14, 25	141.9
13	6.44	ddt	15.1, 10.8, 0.9	12, 14	(10a), 11, 16b, (17), 25	126.2
14	5.98	tq	10.8, 0.7	13, 15	12, 15	131.6
15	5.33	m	-	14, 16ab	14, 16a, 17, (26)	127.9
16a	2.16	dddd	15.1, 6.2, 4.3, 1.6	15, 16b, 17	15, 16b, 17, 26	31.8
16b	2.38	m	-	15, 16a, 17	13, 16a, 17	
17	3.91	m	-			82.9*
18	2.40	m	-	17, 19ab, 26	17, 19b, 26	37.9
19a	1.51	td	12.4, 9.0	18, 19b, 20	19b, 20, (22ab), (26)	35.1
19b	2.05	ddd	12.4, 7.2, 6.3	18, 19a, 20	17, 18, 19a, 20	
20	3.90	m	-	-	-	82.6*
21	3.91	m	-	-	-	69.7**
22a	1.95	m	-	21, 22b, 23	21, 22b, 23	
22b	1.96	m	-	21, 22a, 23	19a, 21, 22a	36.3
23	4.48	ddd	8.3, 6.0, 4.4	22ab, 24	22ab, 24	82.8
24	3.90	m	-	-	-	75.2**
25	0.99	d	6.8	11	9, 10b, 11, 12	19.8
26	1.03	d	7.1	18	16ab, 19a	15.3
OH	not observed due to H / D exchange with $\mathrm{CD}_{3} \mathrm{OD}$					

*,**: Due to overlap in the spectra, these signals could not be assigned and are listed arbitrarily.

2,3-epi-Deacylmandelalide \mathbf{D} (79). A teflon vial was charged with a solution of triol 78 (1.0 mg ,
 $1.2 \mu \mathrm{~mol})$ in THF $(0.1 \mathrm{~mL})$ and the mixture cooled to $0^{\circ} \mathrm{C}$. Pyridine $(100 \mu \mathrm{~L})$ and HF•pyr $(100 \mu \mathrm{~L})$ were added slowly via an Eppendorf pipette. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to ambient temperature and stirred for further 41 h . The reaction was then quenched by pouring the mixture into pH 7.2 buffer $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right.$, 5 mL) and the buffered aqueous phase was extracted with $\mathrm{EtOAc} / \mathrm{EtOH}$ (9:1, $4 \times 6 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93: 7\right.$ to $92: 8$ to $\left.91: 9\right)$ to yield the desired pentaol as a white solid $(0.5 \mathrm{mg}, 86 \%$ yield $) .[\propto]_{D}^{27}=+14(\mathrm{c}=0.16, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): see table $17 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): see table 17 . IR (film): $\tilde{v}=$ 3357, 2956, 2922, 2853, 1758, 1665, 1632, 1609, 1510, 1458, 1408, 1376, 1249, 1205, 1102, 1086, 1046, 979, $707 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=519.3(100(\mathrm{M}+\mathrm{Na})), 1016.37(32(2 \mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{Na}$: 519.2565; found: 519.2563.

Monobutyrate (2R,3S)-78a. Triol $78(2.0 \mathrm{mg}, 2.4 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ and the
 resulting solution cooled to $0^{\circ} \mathrm{C}$. Pyridine ($4.8 \mu \mathrm{~L}, 59 \mu \mathrm{~mol}$) was added via syringe followed by a solution of n-butyric anhydride $(0.6 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 8.6 \mu \mathrm{~L}, 5.2 \mu \mathrm{~mol}$) and DMAP (1 crystal, $\sim 0.1 \mathrm{mg}$). The ice bath was removed after 10 min and the reaction mixture was stirred for another 2 h at ambient temperature. The reaction was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and the aqueous phase was extracted with EtOAc ($4 \times 4 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc 12:1 to 9:1) to give the monobutyrate as a white amorphous solid $(1.5 \mathrm{mg}, 69 \%$ yield $) .[\propto]_{D}^{20}=+26.2\left(\mathrm{c}=0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.30$ (ddt, $J=15.2,10.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J$ $=4.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.8,9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{br} \mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.35 (ddd, $J=10.5,4.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{tt}, J=$ $10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{tt}, J=11.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.53-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=16.0,8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{dtd}, J=15.8,5.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=16.3,11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dddd}, J=$ $12.7,4.8,1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.4,10.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.28-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,172.8,140.6,135.9,135.9,134.0,133.6,129.7,129.6,129.4,127.6,127.5,127.1,124.9$, $81.5,80.2,78.8,77.4,75.2,74.2,73.7,69.7,69.3,68.1,43.9,42.1,41.8,39.2,36.3,36.1,32.6,32.1$,
32.1, 29.7, 29.5, 27.1, 25.8, 19.6, 19.2, 18.2, 18.1, 14.7, 13.7, $-4.5,-4.6$ ppm. IR (film): $\tilde{v}=3380$, 2956, 2928, 2856, 1782, 1743, 1462, 1428, 1376, 1362, 1257, 1177, 1110, 1070, 979, 858, 836, 776, $704 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=941.6(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{Na}$: 941.5026 ; found: 941.5022 .

Table 17: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2,3-epi-deacylmandelalide D (79).

atom n°	${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}$)					${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$	
	δ / ppm	m	J / Hz	COSY	NOESY	δ / ppm	HMBC
1	-	-		-	-	178.9	-
2	-	-		-	-	80.1	-
3	4.34	dd	6.6, 2.0	4 ab	4b, 5, 11, (24)	69.5	1, 4, 5
4a	1.70	ddd	15.3, 6.6, 2.0	3,4b, 5	(3), 4b, (5)		3
4b	1.90	ddd	15.4, 10.8, 2.0	3, 4a, 5	3, 4a, 24		2, 5
5	3.64	tt	11.0, 1.8	4ab, 6ab	3, 4a, 6b, 7, 9	75.2	(4)
6a	1.17	ddd	12.0, 11.3, 11.3	5, 6b, 7	6b		4, 7, 8
6b	1.94	ddt	12.3, 4.4, 1.9	5, 6a, 7	(4a9; 5, 6a, 7	42.5	7, 8
7	3.81	tt	11.0, 4.7	$6 \mathrm{ab}, 8 \mathrm{ab}$	5, 6b, 8b, 9	68.6	-
8 a	1.15	td	11.6, 11.2	7, 8b, 9	8b, (10b)	42.7	$6,7,9,10$
8 b	1.85	m	-	7, 8a, 9	7, 8a, 9	42.7	6,7
9	3.50	ddt	11.2, 10.2, 1.8	$8 \mathrm{ab}, 10 \mathrm{ab}$	5, 7, 8b (10a), (11), 25	74.8	7
10a	1.28	m	-	9, 10b, 11	(8b), (9), 10b, 25		11, 25
10b	1.58	ddd	13.8, 10.3, 2.8	9, 10a, 11	(8a), (11), 10a	45.2	9, 25
11	2.58	m	-	10ab, 12, 25	3, 9, 10b, (12), 13, 25	34.0	(13)
12	5.53	dd	15.1, 7.8	11, 13	(11), 14, 25	141.9	10, 11, 14, 25
13	6.40	ddt	15.2, 11.1, 0.6	12, 14	(10b), 11, 16b, (25)	126.2	11, 14, 15
14	5.93	tt	10.9, 1.6	13, 15, (16ab)	12, 15	130.8	12, 13, 16
15	5.23	ddd	10.9, 8.8, 5.3	14, 16ab	14, 16a, 17, 26	128.0	13, (16)
16a	2.27	dtd	15.8, 5.8, 2.1	15, 16b, 17	(13), (15), 16a, (17), 26		14, 15, 17, 18
16b	2.42	dddd	15.7, 9.1, 6.4, 1.6	15, 16a, 17	13, 16b, (17)	33.1	14, 15, 17 , (18)
17	4.01	td	7.1, 4.7	16ab, 18	15, (16b), 18	83.4	
18	2.47	dqd	7.1, 7.0, 3.9	17, 19ab, 26	17 ,19a, 26	38.4	16, 17, 19, 26
19a	1.62	m	-	18, 19b, 20	17, 19b, 20, 22b, 26	34.1	18, 20, 21, 26
19b	2.00	dt	12.6, 6.6	18, 19a, 20	18, 19a, 20, (26)	34.1	17, 18, 26
20	4.04	ddd	9.6, 6.3, 4.1	19ab, 21	17, 18, 19b, 21	83.0	22
21	3.95	ddd	11.0, 4.1, 2.2	20, 22ab	20, 22a, 23	69.3	19
22a	2.22	ddd	14.7, 8.7, 2.2	21, 22b, 23	21, 22b, (23), 24		23, 24
22b	1.85	m	-	21, 22a, 23	22a, 23	31.5	
23	4.95	ddd	8.7, 4.9, 3.6	22ab, 24	21, 22ab, 24	80.8	
24	4.14	d	3.6	23	(3), 4b, 23	77.1	1, 2, 23
25	1.00	d	6.7	11	9, 10a, 11, 12	20.0	10, 11, 12
26	1.04	d	7.0	18	(15), 16(a)b, 18, 19a	14.9	17, 18, 19
OH	not observed due to H / D exchange with $\mathrm{CD}_{3} \mathrm{OD}$						

Key NOE contacts for the γ-lactone region of monobutyrate 78a.

2,3-epi-Mandelalide $\mathbf{C} \mathbf{(8 0)}$. A teflon vial was charged with a solution of mono-butyrate $\mathbf{7 8 a}(1.5 \mathrm{mg}$,
 $1.6 \mu \mathrm{~mol})$ in THF $(0.15 \mathrm{~mL})$. Pyridine $(0.15 \mathrm{~mL})$ was added and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. HF-pyr $(0.15 \mathrm{~mL})$ was added carefully and the ice bath was removed 5 min after the addition. The reaction mixture was stirred for 25 h before the reaction was quenched with $\mathrm{EtOAc}(3 \mathrm{~mL})$ and pH 7.2 buffer $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}, 5 \mathrm{~mL}\right)$. The aqueous phase was extracted with $\mathrm{EtOAc} / \mathrm{EtOH}(9: 1,3 \times 4 \mathrm{~mL}$), the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right.$ to $96: 4$ to $\left.95: 5\right)$ to give a white amorphous solid ($0.72 \mathrm{mg}, 78 \%$ yield). $[\propto]_{D}^{20}=-19\left(\mathrm{c}=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, CDCl_{3}): see table $18 .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see table 18. IR (film): $\tilde{v}=3377,2961,2930$, $2875,1775,1737,1455,1413,1367,1329,1262,1179,1102,1057,979,947,733 \mathrm{~cm}^{-1}$. MS (ESIpos) $m / z(\%)=589.4(100(\mathrm{M}+\mathrm{Na}))$. HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{10} \mathrm{Na}$: 589.2983; found: 589.2978.

Key NOE contacts for the γ-lactone region of $\mathbf{8 0}$.

Table 18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for 2,3-epi-mandelalide $\mathrm{C}(\mathbf{8 0})$.

atom n°	${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$					$\begin{aligned} & { }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3},\right. \\ & 150 \mathrm{MHz}) \delta / \mathrm{ppm} \end{aligned}$
	δ / ppm	m	J / Hz	COSY	NOESY	
1	-	-	-	-	-	172.5
2	-	-	-	-	-	78.3
3	5.51	dd	4.8, 4.8	4 ab	4a, 5, 11, (24), 28a OHd	69.3
4a	1.73	ddd	16.2, 4.6, 1.6	3, 4b, 5	$3,4 b, 5,6 b$	
4b	2.11	m	-	3, 4a, 5	4a, (6b)	38.6
5	3.74	dddd	11.0, 11.0, 1.9, 1.7	4ab, 6ab	$3,4 a, 6 b, 7,9$	73.5
6a	1.23	ddd	12.3, 11.7, 11.6	5,6b, 7	-	12
6b	1.93	m	-	6a	4a(b), 5, 7	41.2
7	3.85	dddd	11.0, 11.0, 4.8, 4.8	$6 \mathrm{ab}, 8 \mathrm{ab}$	$5,6 b, 8 b, 9$	67.5
8 a	1.28	ddd	12.6, 11.3, 11.3	7, 8b, 9	-	
8 b	1.94	m	-	8 a	7,9	40.8
9	3.50	m	-	8ab, 10ab	5, 7, 8b, 10ab, 12, (25)	74.5
10a	1.33	ddd	14.0, 9.9, 4.0	9, 10b, 11	(8a), 9, 10b, (11), 25	22.
10b	1.71	m	-	9, 10a, 11	$8 \mathrm{a}, 9,10 \mathrm{a}, 11,13,24,25,0 \mathrm{Hd}$	42.6
11	2.46	m	-	10, 12, 13, 25	$3,9,10 a, 12,(13,24), 25$	30.6
12	5.72	dd	15.5, 5.2	11, 13	9, (10ab), 11, 14, 25	140.6
13	6.26	dddd	15.6, 10.7, 1.2, 1.1	11, 12, 14	10a, 11, 16a, 21, 25, OHc	123.3
14	6.06	dd	10.7, 10.7	13, 15, 16ab	12, 15	130.9
15	5.31	ddd	11.0, 5.0, 5.0	14, 16ab	14, 16b, 17	127.3
16a	1.98	ddt	14.0, 4.7, 2.1	14, 15, 16b, 17	15, 16b, 17, 18, 26	30.4
16b	2.39	m	-	14, 15, 16a, 17	13, 16a, 21	30.4
17	3.95	ddd	10.6, 7.2, 1.9	16ab, 18	16a, 18, 26	81.7
18	2.41	m	-	17, 19ab, 26	17, 19a, 20, 26	36.5
19a	1.54	m	-	18, 19b, 20	18, 19b, 22b, 26	35.7
19b	2.10	m	-	18, 19a, 20	18, 19a, 20, (21), 26	35.7
20	3.80	ddd	8.5, 7.3, 3.6	19ab, 21	9, 17, 18, 19a, 22b	81.1
21	3.46	m	-	20, 22ab, OHc	13, 16b, (19b), 20, 23, 24	70.6
22a	1.93	m	-	21, 22b, 23	-	31
22b	2.24	ddd	14.1, 11.3, 11.3	21, 22a, 23	20, 22a, 23, 24, OHc, OHd	1.7
23	4.74	ddd	11.3, 4.3, 3.2	22ab, 24	21, 24	80.0
24	4.21	dd	3.1, 2.1	23, OHd	$4 \mathrm{a}, 5,9,23, \mathrm{OHa}, \mathrm{OHc}, \mathrm{OHd}$	74.3
25	1.05	d	6.8	11	9, 10a, 11, 12, 13	20.2
26	1.02	d	7.0	18	16a, 17, 18, 19a	14.8
27	-	-	-	-	-	172.9
28a	2.42	ddd	15.9, 8.2, 6.8	28b, 29ab	28b, 30	36.0
28b	2.33	ddd	16.0, 8.1, 6.9	28a, 29ab	28a, 30	36.0
29	1.68	m	-	28ab, 30	-	18.2
30	0.94	t	7.4	29	28 ab	13.7
OHa	3.42	brs	-	-	OH d	-
OHb	1.56	m	-	-	-	-
OHc	2.87	d	6.6	21	13, 24	-
OHd	4.81	d	2.1	(23), 24	3, 4b, 5, 10b, 11, 22b, 24	-

(E)-3-((Z)-Hept-4-en-1-ylidene)dihydrofuran-2(3H)-one ((E)-83). LiHMDS (475 mg, 2.83 mmol$)$
 was dissolved in THF (6 mL) and the solution cooled to $-78^{\circ} \mathrm{C}$ before a solution of γ-butyrolactone ($\mathbf{8 2}$) ($200 \mu \mathrm{~L}, 2.60 \mathrm{mmol}$) in THF (2.4 mL) was introduced via canula. The resulting yellow mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ before a solution of cis-4-heptenal ($\mathbf{8 1}$) ($313 \mu \mathrm{~L}, 2.37 \mathrm{mmol}$) in THF (3.8 mL) was added via canula. The reaction mixture was allowed to stir for 1 h at $-78^{\circ} \mathrm{C}$, when triethylamine ($494 \mu \mathrm{~L}, 3.54 \mathrm{mmol}$) and methanesulfonyl chloride $(0.238 \mathrm{~mL}, 3.07 \mathrm{mmol})$ were added via syringe. The reaction mixture was allowed to warm to ambient temperature and stirred for further 2 h . It was then cooled to $0^{\circ} \mathrm{C}$ and DBU ($530 \mu \mathrm{~L}, 3.54 \mathrm{mmol}$) was added via syringe. The cooling bath was removed after 5 min and the reaction mixture stirred for another 1 h at ambient temperature. The reaction was quenched by pouring the mixture into sat. NaHCO_{3} solution $(20 \mathrm{~mL})$. After dilution with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, the organic phase was washed with sat. NaHCO_{3} solution (15 mL) and the combined aqueous washings were reextracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$ to $3.5: 1$ to $3: 1$) to yield the major (E)-isomer ($246 \mathrm{mg}, 58 \%$) as a pale yellow oil along with the minor (Z)-isomer (40 mg, 9\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.71$ (ttd, $\left.J=7.4,2.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.44-5.36(\mathrm{~m}, 1 \mathrm{H})$, $5.27(\mathrm{dtt}, J=10.6,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{tdd}, J=7.4,3.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-$ $2.15(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{td}, J=7.5,0.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=171.2,140.2,133.3,126.9,125.5,65.3,30.4,25.6,25.1,20.5,14.2 \mathrm{ppm} . \operatorname{IR}$ (film): $\tilde{v}=3005,2963$, 2932, 2873, 1746, 1679, 1440, 1378, 1352, 1306, 1282, 1217, 1197, 1177, 1139, 1028, 961, 868, 719, $614 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=112$ (100), 91 (4), 83 (11), 79 (6), 77 (5), 69 (21), 67 (22), 41 (32). HRMS (ESIpos): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$: 203.1042; found: 203.1042 .
(Z)-3-((Z)-Hept-4-en-1-ylidene)dihydrofuran-2(3H)-one ((Z)-83). Obtained as the minor isomer
 from the reaction described above. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.20(\mathrm{tt}, J=$ $7.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.88(\mathrm{tq}, J=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{qt}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{qd}, J=$ $7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $170.1,143.4,132.7,127.5,123.7,65.3,29.1,27.4,26.5,20.5,14.2 \mathrm{ppm}$. IR (film): $\tilde{v}=3005,2963$, 2931, 2872, 1747, 1671, 1443, 1374, 1221, 1168, 1126, 1077, 1025, 958, 867, 866, 798, 756, 717 $\mathrm{cm}^{-1} . \operatorname{MS}(\mathrm{EI}) m / z(\%)=180(6), 151(8), 125(5), 123$ (9), 113 (7), 112 (100), 95 (10), 91 (15), 83 (15), 79 (20), 77 (11), 69 (16), 67 (37), 53 (14), 41 (34), 39 (13). HRMS (ESIpos): $m / z:$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$: 203.1042; found: 203.1043.

Diol 84. A solution of diene (E) $\mathbf{- 8 3}(10.0 \mathrm{mg}, 55.5 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. TMEDA $(9.6 \mu \mathrm{~L}, 63.8 \mu \mathrm{~mol})$ was added via syringe and the reaction mixture was equilibrated at $-78{ }^{\circ} \mathrm{C}$ for 5 min . A solution of $\mathrm{OsO}_{4}(0.6 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 105 \mu \mathrm{~L}, 62.7 \mu \mathrm{~mol}$) was then added dropwise until no more SM was detected by TLC analysis (after every three drops ($\sim 8-10 \mu \mathrm{~L}$), the reaction mixture was controlled by TLC). Upon complete consumption of the s.m., all volatiles were removed under reduced pressure and the composition of the residue controlled by ${ }^{1} \mathrm{H}$ NMR analysis (see below). The residue was redissolved in THF $(0.7 \mathrm{~mL})$ and treated with sat. $\mathrm{NaHSO}_{3}(0.7 \mathrm{~mL})$ under vigorous stirring for 16 h . For work up, brine (5 mL) was added and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc $3: 2$ to $1: 1$) to yield the desired diol as a colorless oil (8.5 mg , 72% yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.46-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.28$ (dddt, $J=10.9,8.2,6.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=9.0,8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.6,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.68$ (dddd, $J=$ $13.9,10.6,7.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dtd}, J=13.9,8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$, 133.1, 127.6, 75.1, 72.9, 66.3, 32.0, 29.6, 23.0, 20.5, 14.3 ppm . IR (film): $\tilde{v}=3446,3004,2962,2932,2873,1758,1455,1381,1307,1202,1155,1119,1082,1023$, 984, 953, $690 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=196$ (2), 178 (7), 123 (10), 115 (36), 109 (13), 102 (100), 95 (45), 83 (23), 67 (62), 56 (64), 55 (51), 41 (52). HRMS (ESIpos): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}$: 237.1097; found: 237.1097.

Four compounds were contained in the crude product, they were assigned to the following compounds on the basis of ${ }^{1} \mathrm{H}$ NMR and ESI-MS.

ratio

8.0

1.0

0.4

0.2

Comparison of synthetic 2,3-epi-mandelalide $\mathbf{C}(80)$ with the natural product.

synthetic 80
$\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right.$)

1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

natural mandelalide C $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right)$

Table 19: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{8 0}\left({ }^{1} \mathrm{H}: 600 \mathrm{MHz},{ }^{13} \mathrm{C}: 150 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right)$ with the data of the natural product (Lit. ${ }^{[13]} ;{ }^{1} \mathrm{H}: 600 \mathrm{MHz},{ }^{13} \mathrm{C}: 175 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

	${ }^{1} \mathrm{H}$ NMR			${ }^{13} \mathrm{C}$ NMR		
atom n°	$\delta($ Lit. $) / \mathrm{ppm}$	$\delta(80) / \mathrm{ppm}$	$\Delta \delta$ (80-Lit.)	$\delta($ Lit.) /ppm	$\delta(80) / \mathrm{ppm}$	$\Delta \delta$ (80-Lit.)
1	-	-	-	174.7	172.5	2.2
2	-	-	-	82.0	78.3	3.7
3	5.51	5.51	0.00	68.3	69.3	-1.0
4 a	1.65	1.73	-0.08			
4b	2.14	2.11	0.03	36.4	38.6	-2.2
5	3.25	3.74	-0.49	72.3	73.5	-1.2
6a	1.11	1.23	-0.12	41.2	41.2	0.0
6 b	1.86	1.93	-0.07			
7	3.76	3.85	-0.09	68.3	67.5	0.8
8 a	1.13	1.28	-0.15			10
8b	1.83	1.94	-0.11	41.8	40.8	1.0
9	3.37	3.50	-0.13	72.3	74.5	-2.2
10a	1.19	1.33	-0.14	42.1	42.6	-0.5
10b	1.57	1.71	-0.14			
11	2.49	2.46	0.03	34.0	30.6	3.4
12	5.5	5.72	-0.22	142.2	140.6	1.6
13	6.39	6.26	0.13	123.2	123.3	-0.1
14	6.1	6.06	0.04	131.1	130.9	0.2
15	5.28	5.31	-0.03	127.1	127.3	-0.2
16a	1.9	1.98	-0.08	30.7	30.4	0.3
16 b	2.3	2.39	-0.09		30.4	0.3
17	3.95	3.95	0	81.6	81.7	-0.1
18	2.53	2.41	0.12	38.3	36.5	1.8
19a	1.33	1.54	-0.21	35.7	35.7	0
19b	2.1	2.10	0	35.7	35.7	0.0
20	3.82	3.80	0.02	82.4	81.1	1.3
21	3.73	3.46	0.27	74.4	70.6	3.8
22a	1.59	1.93	-0.34			0.4
22b	1.82	2.24	-0.42	32.1	31.7	0.4
23	5.01	4.74	0.27	78.9	80.0	-1.1
24	3.98	4.21	-0.23	72.2	74.3	-2.1
25	1.06	1.05	0.01	18.4	20.2	-1.8
26	1.03	1.02	0.01	14.2	14.8	-0.6
27	-	-	-	173.4	172.9	0.5
28a	2.34	2.42	-0.08			
28b	2.34	2.33	0.01	36.3	36.0	0.3
29	1.65	1.68	-0.03	18.7	18.2	0.5
30	0.94	0.94	0.00	13.9	13.7	0.2

Table 20: Comparison of ${ }^{1} \mathrm{H}$ NMR chemical shifts of 77 and $79\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ with the data of the natural product (Lit. ${ }^{[13]} ; 700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$).

atom n°	δ (Lit.) /ppm	$\delta(79) / \mathrm{ppm}$	$\Delta \delta$ (79-Lit.)	$\delta(77) / \mathrm{ppm}$	$\Delta \delta$ (77-Lit.)
1	-	-	-	-	-
2	-	-	-	-	-
3	4.06	4.34	-0.28	3.92	0.14
4 a	1.56	1.70	-0.14	1.74	-0.18
4 b	2.02	1.90	0.12	1.96	0.06
5	3.39	3.64	-0.25	3.58	-0.19
6a	1.11	1.17	-0.06	1.19	-0.08
6 b	1.88	1.94	-0.06	1.89	-0.01
7	3.76	3.81	-0.05	3.78	-0.02
8 a	1.08	1.15	-0.07	1.11	-0.03
8 b	1.83	1.85	-0.02	1.88	-0.05
9	3.39	3.50	-0.11	3.41	-0.02
10a	1.23	1.28	-0.05	1.35	-0.12
10b	1.49	1.58	-0.09	1.54	-0.05
11	2.49	2.58	-0.09	2.52	-0.03
12	5.51	5.53	-0.02	5.55	-0.04
13	6.42	6.4	0.02	6.44	-0.02
14	6.1	5.93	0.17	5.98	0.12
15	5.3	5.23	0.07	5.33	-0.03
16a	1.94	2.27	-0.33	2.16	-0.22
16b	2.38	2.42	-0.04	2.38	0.00
17	3.98	4.01	-0.03	3.91	0.07
18	2.52	2.47	0.05	2.40	0.12
19a	1.37	1.62	-0.25	1.51	-0.14
19b	2.14	2.00	0.14	2.05	0.09
20	3.84	4.04	-0.20	3.90	-0.06
21	3.75	3.95	-0.20	3.91	-0.16
22a	1.52	1.85	-0.33	1.95	-0.43
22b	1.81	2.22	-0.41	1.96	-0.15
23	4.81	4.95	-0.14	4.48	0.33
24	4.32	4.14	0.18	3.90	0.42
25	1.01	1.00	0.01	0.99	0.02
26	1.08	1.04	0.04	1.03	0.05

Table 21: Comparison of ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathbf{2 5 3}$ and $\mathbf{2 5 5}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ with the data of the natural product (Lit. ${ }^{[13]} ; 175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$).

atom \mathbf{n}°	δ (Lit.) /ppm	$\delta(79) / \mathbf{p p m}$	$\Delta \delta$ (79-Lit.)	$\delta(77) / \mathbf{p p m}$	$\Delta \delta$ (77-Lit.)
1	176.3	178.9	-2.6	177.9	0.2
2	82.4	80.1	2.3	76.9	5.5
3	66.6	69.5	-2.9	73.3	-6.7
4	37.4	40.4	-3.0	38.0	-0.6
5	72.3	75.2	-2.9	74.2	-1.9
6	40.3	42.5	-2.2	42.3	-2.0
7	67.1	68.6	-1.5	68.8	-1.7
8	40.7	42.7	-2.0	42.9	-2.2
9	71.1	74.8	-3.7	74.2	-3.1
10	41.2	45.2	-4.0	45.3	-4.1
11	33.5	34.0	-0.5	34.9	-1.4
12	140.7	141.9	-1.2	141.9	-1.2
13	122.8	126.2	-3.4	126.2	-3.4
14	130.0	130.8	-0.8	131.6	-1.6
15	126.3	128.0	-1.7	127.9	-1.6
16	31.2	33.1	-1.9	31.8	-0.6
17	81.0	83.4	-2.4	82.9	-1.9
18	37.6	38.4	-0.8	37.9	-0.3
19	34.7	34.1	0.6	35.1	-0.4
20	82.2	83.0	-0.8	82.6	-0.4
21	73.9	69.3	4.6	69.7	-4.2
22	32.0	31.5	0.5	36.3	-4.3
23	78.3	80.8	-2.5	82.8	-4.5
24	71.7	77.1	-5.4	75.2	-3.5
25	17.0	20.0	-3.0	19.8	-2.8
26	12.3	14.9	-2.6	15.3	-3.0

References

[1] The calculations were performed by Ms. Berit Heggen, group of Prof. Dr. Walter Thiel, Department of Theoretical Chemistry, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
[2] J. Willwacher, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 4217.
[3] Y. Lu, I. S. Kim, A. Hassan, D. J. Del Valle, M. J. Krische, Angew. Chem. Int. Ed. 2009, 48, 5018.
[4] J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901.
[5] B. M. Hackman, P. J. Lombardi, J. L. Leighton, Org. Lett. 2004, 6, 4375.
[6] The configuration of the stereogenic center of the propgargylic alcohol was assigned by comparison with the result of a Carreira alkynylation (D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806) using (+)-N-methyl ephedrine, $\mathrm{Zn}(\mathrm{OTf})_{2}$ and triethylamine. This alkynylation gave almost exclusively the alcohol, that was also the major diastereomer of the addition of lithiated alkyne. Although the overall yield was higher (72%), partial epimerization at the α-position of the aldehyde was observed.
[7] S. N. Goodman, E. N. Jacobsen, Angew. Chem. 2002, 114, 4897.
[8] Due to the volatility of the catalyst, a higher vacuum should be avoided.
[9] S. E. Denmark, W. R. Collins, Org. Lett. 2007, 9, 3801.
[10] (a) E. D. Mihelich, G. A. Hite, J. Am. Chem. Soc. 1992, 114, 7318; (b) D. R. Williams, Y. Harigaya, J. L. Moore, A. D'Sa, J. Am. Chem. Soc. 1984, 106, 2641.
[11] A solution of NaOMe was prepared by adding an equimolar amount of MeOH to a suspension of NaH in THF at $0^{\circ} \mathrm{C}$, which was allowed to stir at room-temperature until gas evolution had ceased ($\sim 1 \mathrm{~h}$).
[12] W. Boland, N. Schroer, C. Sieler, M. Feigel, Helv. Chim. Acta 1987, 70, 1025.
[13] J. Sikorska, A. M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-Coleman, J. E. Ishmael, K. L. McPhail, J. Org. Chem. 2012, 77, 6066.
[14] Obtained from Sigma Aldrich as an unspecified mixture of NaHSO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$. On this model system, use of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ gave comparable results. It is presumed, that NaHSO_{3} is formed from $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ upon contact with water.

Spectra

The spectra of all compounds and intermediates leading to $\mathbf{1}$ and 11 -epi-1 can be found in the Supporting Information of our original Communication. ${ }^{[2]}$

-epi-1
$\overline{\bar{O}} \mathrm{H}$

	$\stackrel{\circ}{+}$		
\|		\mid \|l	

OTBDPS
ŌNBz
30c

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1				1	1	1		1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	1	1	1		1	1			1				1	1	1	1			1		1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

-19.81
-15.30

	1	1	1	I	1	I	1	1	1	,	I	1	1	I	1	1	1	1	1	1	1	,
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

